
Model Order Reduction for High Dimensional Linear Systems based on
Rank-1 Incremental Proper Orthogonal Decomposition

Chao Xu and Eugenio Schuster

Abstract— This work considers a modified incremental

proper orthogonal decomposition (iPOD) method and appli-

cations to model order reduction (MOR) of linear evolutionary

distributed parameter systems. A recursive matrix transforma-

tion approach is proposed to obtain reduced order models from

high-dimensional systems with less computational cost than the

non-recursive case. A detailed analysis of the computational

complexity is carried out to compare different numerical

procedures. Simulation results based on the heat conduction

process in a two dimensional container validate the effectiveness

of the proposed method.

I. INTRODUCTION

The discretization of partial differential equations (PDEs)
using various numerical methods usually results in large sets
of ordinary differential equations (ODEs) or ordinary dif-
ference equations (OdEs). However, these high-dimensional
dynamical models derived from the spatial, and eventually
temporal, discretization procedure are often inappropriate for
control synthesis because they are computationally costly in
solving controller-synthesis-related equations (e.g., Riccati
equation, Lyapunov equation, etc.). One may think to tackle
the high-dimensionality challenge by using coarse meshes
for the domain discretization. However, lower order mod-
els obtained by using coarse meshes may not be accurate
enough to capture the essential dynamics. Therefore, model
order reduction (MOR) using observational/simulation data
becomes an alternative procedure to provide reduced-order
models for controller synthesis. This is a typical data-driven
model-reduction approach using both physical structures and
observational data.

There are several MOR approaches, including the bal-
anced truncation method, the Krylow subspace method and
the proper orthogonal decomposition (POD) method. The
balanced truncation is an important tool originated in the
control systems community [1]. When this method is used to
derive reduced-order models for high dimensional systems,
Lyapunov equations with the same order of the original
systems must be solved numerically. This is a computational
challenge and it finally led to the birth of the balanced POD
method which combines both the POD and the balanced
truncation method but without solving high-dimensional Lya-
punov equations [2], [3]. The Krylov subspace method has

This work was supported by the Fundamental Research Funds for the
Central Universities (1A5000-172210101) and the National Science
Foundation CAREER award program (ECCS-0645086).
C. Xu (cxu@csc.zju.edu.cn) is with the Department of
Control Science and Engineering, Zhejiang University, 38 Zheda Road,
Hangzhou, 310027, P. R. China. E. Schuster is with the Department
of Mechanical Engineering and Mechanics, Lehigh University, 19
Memorial Drive West, Bethlehem, PA 18015, USA.

been used widely in fast simulations of large scale linear
systems (e.g., discretized PDEs, large scale integrated circuits
(IC), etc.). For a detailed introduction of both the balanced
truncation method and the Krylov subspace method for
model order reduction, the reader is referred to introductory
books (e.g., [4], [5]).

The POD method is also known as the principal compo-
nent analysis (PCA) or the Karhunen-Loeve decomposition.
The original concept of the POD method goes back to
Pearson’s work published in 1833 [6]. The POD method
has been widely used in understanding complex behaviors
produced by many high dimensional dynamical systems,
such as fluid flows [7], heat flow [8], microelectromechanical
systems (MEMS) [9], aero-elasticity [10], etc. However, most
work concerning POD focuses on what is called the batch

POD method, where modes are extracted from given historic
observations without having the capability to incorporate new
observations when they become available. A new method,
called incremental POD (iPOD) (e.g., [11]), has been pro-
posed to enable dimension increase, and mode deformations
if necessary, when new observations are available. The incre-
mental POD method has been applied successfully to pattern
recognition (e.g., [12]) and visual tracking (e.g., [13]).

The main contribution of this paper is the introduction
of a modified incremental POD method for model order
reduction of high-dimensional dynamical systems. Without
using the mean value of the observations in this work, the
proposed incremental POD problem has a simpler form than
that in [11] and it can be extended to multi-snapshot-based
incremental POD schemes (i.e., rank q (q > 1) incremental
POD). To match the incremental POD method, an incremen-
tal Galerkin projection scheme is developed. This scheme
computes system projection matrices recursively based on the
existing matrices obtained in the previous mode extraction
step. A detailed analysis of the computational complexity is
carried out to illustrate the computational efficiency of the
incremental POD-based MOR approach.

The paper is organized as follows. In Section II, the
mathematical derivations of the POD method and the snap-
shots method are summarized. In Section III, the formulation
and numerical schemes of the incremental POD method
are discussed. In Section IV, an incremental Galerkin pro-
jection method for model order reduction is proposed. In
Section V, the computational complexity of the incremental
POD method is studied. In Section VI, numerical simulations
that validate the effectiveness of the proposed method are
provided. The paper is closed by stating conclusions and
future research topics in Section VII.

II. PROPER ORTHOGONAL DECOMPOSITION (POD)

We have N training samples (snapshots) xi ∈ Rn (i =
1, 2, . . . , N) and we use X = (x1, . . . ,xN) ∈ Rn×N to
denote the observations (snapshot matrix). Usually, n (the
number of spatial discretization nodes) is much larger than
N (the number of samples at different time instants). We
introduce the covariance matrix of X ,

C =
1
N

N�

i=1

xixT
i . (1)

The POD problem can be stated as the search of a sequence
of orthogonal basis functions {φk}p

k=1 (p ≤ N , φT
i φj = δij)

to represent each snapshot in the observation set X , i.e.,

xi ≈ �xi =
p�

k=1

Xikφk, ∀xi ∈X , i = 1, 2, . . . , N, (2)

where the coefficient Xik can be determined by Xik = φT
k xi.

Then, the basis functions can be determined by the following
approximation-error minimization problem:

min
φ1,...,φp

1
N

N�

i=1

�����xi −
p�

k=1

Xikφk

�����

2

2

subject to: φ
T
k φl = δkl =

�
1, if k = l,

0, otherwise,

(3)

where the constraint implies the orthonormality property of
the basis vectors.

Lemma 1 ([14], [15]): Given the observation data set
X = (x1, . . . ,xN) ∈ Rn×N with rank d ≤ min{n, N},
then the optimal solution to the minimization problem (3) is
given by the first p (p ≤ n) eigenvectors of the following
eigenvalue decomposition problem

1
N

X X T
φl = λlφl, l = 1, . . . , n. (4)

The approximation error can be bounded by

ε
2(p)= min

φ1,...,φp

1
N

N�

i=1

�����xi −
p�

k=1

Xikφk

�����

2

2

≤
n�

k=p+1

λk. (5)

Remark 1 (Method of snapshots [16]): If n� N , then it
is impractical to solve the eigenvalue decomposition problem
(4). However, one can solve the following symmetric eigen-
value decomposition 1

N X T X ψl = λlψl, l = 1, . . . , n. The
POD modes are given by φl = 1√

λl
X ψl, l = 1, 2, . . . , p.

III. RANK-1 INCREMENTAL POD

Given a new observation x# ∈ Rn, we can use the
eigenspace model Φ = (φ1, . . . ,φp) to give an approxi-
mation x# ≈ �x# =

�p
i=1 giφi, gi = φT

i x#, where the
approximation error is given by

h = x# − �x# = x# − Φg, g = (g1, . . . , gp)
T

. (6)

If �h� is large, then the observation x# is not well repre-
sented by eigenspace model (φ1, . . . ,φp). We need to include
this new observation x# and update the eigenspace model.

Remark 2 (Shift window POD): The most straightfor-
ward way to achieve this is by adding the latest sample to
the end of the snapshot ensemble and dropping the sample
at the beginning to retain a fixed length window. Then, the
POD problem is solved again for the new data ensemble in
order to update both the eigenvalues and eigenvectors.

It is not computationally efficient to carry out repeatedly
POD computations at each ensemble update. We present
an incremental POD method in this section. We consider
the eigenvalue decomposition of the updated observation set
X � ← (X ,x#) ∈ Rn×(N+1). First, the covariance matrix
becomes

C � =
N

N + 1
C +

1
N + 1

x#xT
#. (7)

Remark 3: Using the residues xi − x̄� (i = 1, 2, . . . , N +
1), where x̄� � 1

N+1 (N x̄ + x#), to replace the snapshots in
(7), we have

�C � =
1

N + 1

�
N�

i=1

(xi − x̄�) (xi − x̄�)T

+ (x# − x̄�) (x# − x̄�)T
�

(noting xN+1 = x#)

=
N

N + 1
�C +

N

(N + 1)2
(x# − x̄) (x# − x̄)T

,

(8)

where �C � 1
N

�N
i=1 (xi − x̄) (xi − x̄)T and the cross terms

involving
�N

i=1(xi−x̄)(x̄−x#)T and its transpose are zero.
We note that the recursive form (8) has the same structure
of (7) where the average value is not used in computing the
covariance matrix.

Remark 4: Given a data sequence xi (i = 1, 2, . . . , N)
and the newly collected data sequence x#,j (j =
1, 2, . . . ,∆N), where the integer ∆N > 1, we derive the
covariance matrix using the following definition

�C � � 1
N + ∆N

N+∆N�

i=1

(xi − x̄�) (xi − x̄�)T

=
1

N + ∆N

N�

i=1

(xi − x̄�) (xi − x̄�)T

+
1

N + ∆N

∆N�

j=1

(x#,j − x̄�) (x#,j − x̄�)T
.

(9)

Noting that x̄� = 1
N+∆N

�
N x̄ +

�∆N
k=1 x#,k

�
, then we have

�C � =
1

N + ∆N

N�

i=1

(xi − x̄) (xi − x̄)T +
N

(N + ∆N)3

×
�

∆N x̄−
∆N�

k=1

x#,j

��
∆N x̄−

∆N�

k=1

x#,j

�T

+
1

N + ∆N

∆N�

j=1

�
x#,j −

N x̄
N + ∆N

−
�∆N

k=1 x#,k

N + ∆N

�

×
�

x#,j −
N x̄

N + ∆N
−

�∆N
k=1 x#,k

N + ∆N

�T

,

(10)

where we have noted that the terms involving the factor
�N

i=1(xi− x̄)
�
∆N x̄−

�∆N
k=1 x#,k

�T
and its transpose are

zero. We note that the recursive form in (10) cannot be
formulated as the one in (7). However, by using the definition
(1) proposed in this paper, the recursive form corresponding
to (7) for block update (∆N > 1) becomes

C � =
N

N + ∆N
C +

1
N + ∆N

∆N�

j=1

x#,jxT
#,j . (11)

It is much more neat than the recursive form in (10) and still
retain the same structure of (7) if we introduce a new update
black matrix X# = (x#,1, . . . ,x#,∆N)T .

The normalized residue vector ĥ is a candidate to expand
the original eigenspace generated from the observation set
X ∈ Rn×N :

ĥ =

h
�h�2

, if �h�2 > η,

0, otherwise,
(12)

where η is a small threshold value. A rotation matrix R is
used to change the subspace (φ1, . . . ,φp, ĥ) into a solution
of the eigenvalue decomposition problem of C � based on the
new observation set X �:

C �
�
(Φ, ĥ)R

�
=

�
(Φ, ĥ)R

�
Λ�. (13)

We note that this is an n × n eigenvalue decomposition
problem and we can multiply (Φ, ĥ)T from the left to obtain
(Φ, ĥ)T C �(Φ, ĥ)R = RΛ�, which is another eigenvalue
decomposition problem but it is (p + 1)-dimensional. By
noting the expression of C � in (7), we have

(Φ, ĥ)T

�
N

N + 1
C +

1
N + 1

x#xT
#

�
(Φ, ĥ)R = RΛ�. (14)

We define

(Φ, ĥ)T C (Φ, ĥ) =
�

ΦT C Φ ΦT C ĥ
ĥT C Φ ĥT C ĥ

�
≈

�
Λ 0
0 0

�

(Φ, ĥ)T x#xT
#(Φ, ĥ) =

�
ΦT x#xT

#Φ Φx#xT
#ĥ

ĥT x#xT
#Φ ĥT x#xT

#ĥ

�

=
�

ggT γg
γgT γ2

�
, γ � ĥT x#.

to rewrite (14) as the following eigenvalue problem:
�

N

N + 1

�
Λ 0
0 0

�
+

1
N + 1

�
ggT γg
γgT γ2

��
R = RΛ�.

(15)
Remark 5: When N → ∞, the incremental eigenvalue

decomposition problem (15) becomes convergent and the
newly added part can be considered as a small perturbation.
Instead of introducing the error vector ĥ (i.e., ĥ = 0) to form
the new subspace

�
Φ, ĥ

�
, a nonsingular rotation operation of

the POD modes Φ, i.e., ΦR̃ can give an alternative solution.
The rotation transformation matrix R̃ can be provided by the
eigenvalue problem of the matrix N

N+1Λ + 1
N+1ggT , which

is a degenerate case of (15). Then the matrix perturbation
theory [17] can be used to provide a fast (approximate)
update.

IV. MODEL ORDER REDUCTION

Let us assume that a high-dimensional linear time-
invariant dynamical model

dX(t)
dt

= AX(t) + BU(t), Y(t) = CX(t), (16)

is given, where X ∈ Rn, U ∈ Rm, Y ∈ Rr and the
initial conditions is stated as X(t0) = X0. A, B and
C are system matrices obtained from a standard spatial
discretization procedure and X ∈ Rn is the state vector
representing the values at the discrete nodes. Usually, the
number of discrete nodes (state dimension) is much larger
than the number of sensors, i.e., n� r.

We generalize the snapshot expansion (2) to a time contin-
uous time case x(t) ≈ �x(t) =

�p
k=1 Xk(t)φp. The reduced

order model is
dX (t)

dt
= AX (t) + BU(t), Y(t) = CX (t), (17)

where X = (X1(t), . . . , Xp(t))
T ∈ Rp, U = U ∈ Rm,

Y ∈ Rr and A = ΦT AΦ, B = ΦT B and C = CΦ. Now we
consider the transformation with Φ� =

�
Φ, ĥ

�
R, then

A� = R
T

�
Φ
ĥ

�
A

�
Φ ĥ

�
R

= R
T

�
ΦT AΦ ΦT Aĥ
ĥT AΦ ĥT Aĥ

�
R

= R
T

�
A ΦT Aĥ

ĥT AΦ ĥT Aĥ

�
R (18)

B�=R
T

�
ΦT

ĥT

�
B=R

T

�
ΦT B
ĥT B

�
=R

T

�
B

ĥT B

�
(19)

C� =C
�

Φ ĥ
�
R=

�
CΦ Cĥ

�
R=

�
C Cĥ

�
R (20)

We summarize different POD-MOR procedures as the fol-
lowing algorithms:

Algorithm 1: Shift window POD-MOR

1) New observation x# is available and

compute the approximation error h
based on (6);

2) If �h� > η, the snapshot matrix X =
(x1, . . . ,xN) becomes X � = (x2, . . . ,xN ,x#)
with the new covariance matrix

denoted by C � = Var{X �};
3) We solve the Nth-order eigenvalue

problem C �Q = QΛ, where Q = (q1, . . . ,qN)
and Λ = diag (λ1, . . . ,λN);

4) Extract the first q columns q1, . . . ,qq

(according to λ1 ≥ . . . ≥ λq) to form

Φ� =
�

1√
λ1

X �q1, . . . ,
1√
λq

X �qq

�
and Λ� =

diag (λ1, . . . ,λq). The truncation order q

is chosen as q = min
�

q�
����
� q�

k=1 λk� N
k=1 λk

≥ 1− �

�
;

5) Compute the matrix transformations

A� = (Φ�)T AΦ�
, B� = (Φ�)T B, C� = CΦ�

. (21)

Algorithm 2: Incremental POD-MOR

1) New observation x# is available and

compute the approximation error h
based on (6);

2) If �h� > η, the snapshot matrix X =
(x1, . . . ,xN) becomes X � = (x1,x2, . . . ,xN ,x#)
with the covariance matrix C �

determined by (7);
3) We solve the (p + 1)-order eigenvalue

problem (15);
4) Compute the matrix transformations

based on (18)-(20) or A� = ΦT AΦ�
,

B� = (Φ�)T B and C� = CΦ�.

V. ARITHMETIC COMPLEXITY ANALYSIS

Now we study the arithmetic complexity of both the
shift-window POD-MOR and the incremental POD-MOR
approaches. We have to compare the arithmetic flops from
two aspects: i- the flops in computing the transformed
matrices; ii- the flops in computing the POD-modes.

Lemma 2 (Matrix multiplication flops): Given two matri-
ces M1 ∈ Rd1×d2 and M2 ∈ Rd2×d3 , then the complexity
of the matrix multiplication M1M2 is 2d1d2d3 flops (a flop
is a floating point operation [18]).

Proof: We first give the algorithm for the matrix
multiplication M1M2:

(Matrix Multiplication)

(The procedure to compute M = M1M2)
M = 0
for i = 1 : d1

for j = 1 : d2

for k = 1 : d3

M(i, j) = M1(i, k)M2(k, j) +M(i, j)
end

end

end

For the most deeply nested statement of this algorithm,
M(i, j) = M1(i, k)M2(k, j) + M(i, j), there are two
flops involved in the operation. In addition, the statement is
executed d1d2d3 times. Therefore, the matrix multiplication
M1M2 requires 2d1d2d3 flops, which is denoted by
F (M) = F (M1 ∗M2) = 2d1d2d3, where ‘∗’ is used to
denote the operation whose computational-complexity flops
are to be counted.

We multiply matrices from left to right. For example,
when we compute ĥT AΦ, we first calculate AΦ and later
ĥT (AΦ). Now we estimate the computational complexity
in calculating (18)-(20). Based on Lemma 2, we know that
the computational-complexity flops of AΦ are 2n × n × p,
i.e., F (A ∗ Φ) = 2pn2, where A ∈ Rn× and Φ ∈ Rn×p.
Similarly, the computational-complexity flops of Aĥ are
F

�
A ∗ ĥ

�
= 2n2. Thus, we can obtain the complexity of

computing (18) as

F
�
A�|(18)

�

=F (A ∗ Φ) + F (A ∗ ĥ)

+ F
�
ĥT ∗ (AΦ)

�
+ F

�
ĥT ∗ (Aĥ)

�
+ F

�
ΦT ∗ (Aĥ)

�

+ F

��
A ΦT Aĥ

ĥT AΦ ĥT Aĥ

�
∗R

�

+ F

�
R

T ∗
��

A ΦT Aĥ
ĥT AΦ ĥT Aĥ

���

=2n
2
p + 2n

2 + 2np + 2n + 2pn

+ 2(p + 1)3 + 2(p + 1)3

=2(p + 1)n2 + 2(2p + 1)n + 4(p + 1)3.
(22)

Similarly, we have

F
�
B�|(19)

�
= F

�
ĥT ∗B

�
+ F

�
R

T ∗
�

B
ĥT B

��

= 2nm + 2(p + 1)2m,

(23)
and

F
�
C�|(20)

�
= F

�
C ∗ ĥ

�
+ F

�
(C Cĥ) ∗R

�

= 2rn + 2r(p + 1)2.
(24)

Therefore, we have the order of the complexity

F
�
A�|(18)

�
+F

�
B�|(19)

�
+F

�
C�|(20)

�
∼ O(n2). (25)

We can compare the complexity of (18)-(20) with that of
(21):

F
�
A�|(21)

�
= F (A ∗ Φ�) + F

�
(Φ�)T ∗ (AΦ�)

�

= 2(p + 1)n2 + 2(p + 1)2n, (26)

F
�
B�|(21)

�
= F

�
(Φ�)T ∗B

�
= 2(p + 1)nr, (27)

F
�
C�|(21)

�
= F (C ∗ Φ�) = 2rn(p + 1), (28)

and

F
�
A�|(21)

�
+F

�
B�|(21)

�
+F

�
A�|(21)

�
∼ O(n2). (29)

Therefore, we can see that the recursive transformations (18)-
(20) can reduce computational complexity to some extent but
there is no significant improvement over (21) in calculating
the new system matrices.

Let us now focus on the computation of the POD-modes.
Given a matrix M ∈ Rn×n, the eigenvalue problem is
Mv = λv. There are various methods (e.g., Chapters 7
and 8 in [18]) that numerically provide the eigenvalue pair
(λi,vi), i = 1, 2, . . . , n. The computational complexity of
the Matlab function eig is O(n3). Thus, we can note that
the eigenvalue decomposition (15) of the incremental method
has much lower computational complexity

�
O

�
(p + 1)3

��

than the eigenvalue decomposition (4) of the shift-window
method

�
O(N3)

�
.

Fig. 1. Schematic of a container with a heat source and two thermostats.

0 500 1000 1500 2000
6

8

10

12

14

16

18

20

22

24

Time

O
ut

si
de

 T
em

pe
ra

tu
re

Fig. 2. Outside temperature evolution.

VI. NUMERICAL EXAMPLE

As shown in Section IV, we do not follow a classical
integral-type Galerkin approach to derive finite-dimensional
models from the projections of the PDEs onto chosen
subspaces. We take advantage of the availability of high-
dimensional discrete numerical models used for simulations
and the generation of data employed for POD mode extrac-
tion. As shown above, we can obtain low-dimensional mod-
els by implementing matrix transformations directly on the
discrete numerical models. The projection matrices carry the
subspace information extracted from the simulation data. The
computation of the integrals in the Galerkin projection have
been embedded in various commercial software packages for
the derivation of the simulation-oriented highly-dimensional
discrete models. Instead of obtaining the discrete model
directly from weak form integrals, the combination of com-
putational software and model order reduction matrix op-
erations can save much computational burden for control
engineers while dealing with complex physical systems.

This idea motivates us to create a general MOR package
to connect with various PDE numerical codes (e.g., Matlab,

Fig. 3. Simulation snapshot at T = 2400s generated by COMSOL
Multiphysics. The surface at the top is the 3D plot of the temperature field
while the figure at the bottom is the temperature contours within the physical
domain.

Fluent, COMSOL Multiphysics, etc.). For the development
of such a package it is necessary to know how the various
numerical codes save the discrete models after implement-
ing the spatial domain decomposition/discretization. In this
work, we choose the powerful COMSOL Multiphysics nu-
merical software to connect with our POD-MOR algorithms.

We consider a two dimensional heat transfer problem in
a container with a glass gate on the left side (as shown in
Fig. 1). Only heat conduction takes place. Air flows and
ventilation are not considered. Then, we can use the heat
equation to model the system dynamics, i.e.,

ρC
∂T

∂t
−∇ · (k∇T) = Q. (30)

The boundary conditions depend on the level of insulation
around the system. On well-insulated sides the heat flux
is zero, which gives the Neumann boundary condition n ·
(k∇T) = 0. On poorly insulated sides the Neumann condi-
tion is modified as n·(k∇T) = kg

lg
(Tout − T), where kg and

lg are the thermal conductivity and the thickness of the glass
sheet that separates the container and the exterior. We use the
same parameters defined in the Model Library of COMSOL
Multiphysics 3.5 (pages 348-359 of [19]). We assume that
the heat source is kept open but the outside temperature is
time varying. We consider an outside temperature evolution,
shown in Fig. 2, of the following form

Tout(t) =

15, t ∈ [0, 500],

15 + 5 sin(
π

60
t), t ∈ [500, 1000],

15 + 5 sin(
π

60
t) + 5 sin(

π

30
t), t ≥ 1000.

Fig. 4. Simulation of the ODEs extracted from COMSOL Multiphysics
using FEM. The red-shaded FEM-based COMSOL Multiphysics Subsystem
block is exported using the COMSOL Multiphysics Simulink Model Export
while the green-shaded FEM-based State-space block is extracted by the
COMSOL Multiphysics State-Space Model Export.

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

45

Time

O
ut

pu
t1

POD MOR based prediction
FEM simulation

Fig. 5. Temperature measured at the left thermostat.

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

45

50

Time

O
ut

pu
t2

POD MOR based prediction
FEM simulation

Fig. 6. Temperature measured at the right thermostat.

Using the finite element method (FEM) implemented
by the numerical software package COMSOL Multi-
physics, we can generate the temporal-spatial evolu-
tion of this process. The snapshot at t = 2400s is
shown in Fig. 3. The high dimensional FEM-based state
space representation (16) can be exported from COM-
SOL Multiphysics. Fig. 4 compares the FEM-based model
and the state space model. The FEM-based COMSOL

Multiphysics Subsystem block is extracted using
COMSOL Multiphysics Simulink Model Export. The
FEM-based State-Space block is made up of the
matrices A,B,C which are obtained by using COMSOL

Multiphysics State-Space Export.
For the POD mode extraction, we first use the historic

data generated from the numerical simulation over the time
interval [0, 500]. The first POD mode carries a dominant
portion of the information in the generated simulation data.
Then, this mode is used to generate a one dimensional
model to approximate the heat conduction process. However,
the error between the dynamics of both the original high-
dimensional model and the reduced one-dimensional model,
which is shown in Figs. 5-6 for both thermostat temperatures,
is larger than what is desired.

Because of the unsatisfactory approximation accuracy
(shown in Figs. 5-6), we need to use new simulation data to
update the POD modes in an incremental way. By setting an
appropriate error threshold value η, the proposed incremental
POD scheme can pick the poorest approximated snapshots
to supplement the snapshot ensemble collected over the
time interval [0, 500]. Two poorly approximated snapshots
are chosen and added one after another. In each update
of the ensemble an eigenvalue decomposition problem is
solved to provide a rotation matrix transformation. After two
subsequent incremental POD computation procedures, the
approximation accuracy is improved and the output signals
at the two measurement points are shown in Figs. 7-8. The
differences between the predictions by the FEM-based high-
dimensional model and the iPOD-based low-dimensional
model for the temperatures at the two measurement points
are reduced to acceptable levels, which are much smaller
that those in Figs. 5-6. This shows the effectiveness of
the MOR approach proposed in this paper. The compar-
isons (Figs. 5-6 and Figs. 7-8) are carried out using the
Matlab/Simulink block diagram shown in Fig. 9 where
the POD/MOR State-Space block and the iPOD/MOR

State-Space block represent low dimensional models
obtained by the classic POD method and the incremental
POD method, respectively.

VII. CONCLUSIONS

A incremental POD method is proposed in this paper
to provide online POD mode subspace updates when new
observation or simulation data becomes available. Instead of
using the weak form of the PDE’s, which requires spatial
integrations over the whole physical domain, we use high-
dimensional ODE models generated by simulation software
through spatial discretization. Matrix transformations are

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

Time

O
ut

pu
t1

iPOD MOR based prediction
FEM simulation

Fig. 7. Temperature measured at the left thermostat.

0 500 1000 1500 2000
5

0

5

10

15

20

25

30

35

40

45

Time

O
ut

pu
t2

iPOD MOR based prediction
FEM simulation

Fig. 8. Temperature measured at the right thermostat.

Fig. 9. Simulation comparisons of reduced order models using both the
classic POD method and the incremental POD method.

used to obtain low-dimensional models. We propose a re-
cursive matrix transformation computation method that can
save significant computational effort. We provide a detailed
computational analysis in this paper for the calculation of
both the POD modes and the matrix transformations. A com-
parison is carried out in terms of computational complexity
between the incremental POD and the shift-window POD
methods. A numerical simulation study based on a 2D heat
conduction process in a container has been used to illustrate
the effectiveness of the proposed method.

REFERENCES

[1] B. Moore, “Principal component analysis in linear systems: Control-
lability, observability, and model reduction,” IEEE Transactions on

Automatic Control, vol. 17, pp. 17–32, 1981.
[2] K. Willcox and J. Peraire, “Balanced model reduction via the proper

orthogonal decomposition,” AIAA Journal, vol. 40, pp. 2323–2330,
2002.

[3] C. Rowley, “Model reduction for fluids using balanced proper orthog-
onal decomposition,” International Journal of Bifurcation & Chaos,
vol. 15, pp. 997–1013, 2005.

[4] A. Antoulas, Approximation of Large-Scale Dynamical Systems.
Philadelphia: SIAM, 2005.

[5] Y. Jiang, Model Order Reduction Techniques. Beijing: Science Press,
2010.

[6] K. Pearson, “On lines and planes of closest fit to a system of points
in space,” Philosophical Magzine, vol. 2, pp. 609–629, 1833.

[7] P. Holmes, J. Lumley, and G. Berkooz, Turbulence, Coherent Struc-

tures, Dynamical Systems and Symmetry. Cambridge, UK: Cambridge
University Press, 1996.

[8] M. Efe and H. Ozbay, “Proper orthogonal decomposition for reduced
order modeling: 2D heat flow,” The Proceedings of the 2003 IEEE

Conference on Control Applications, pp. 1273–1277, 2008.
[9] Y. Liang, W. Lin, H. Lee, S. Lim, K. Lee, and H. Sun, “Proper or-

thogonal decomposition and its applications - Part II: model reduction
for MEMS dynamical analysis,” Journal of Sound and Vibration, vol.
256, pp. 515–532, 2002.

[10] D. Lucia, P. Beran, and W. Silva, “Aeroelastic system development
using proper orthogonal decomposition and volterra theory,” AIAA

Structures, Structural Dynamics, and Materials Conference, AIAA,

Norfolk, VA.
[11] P. Hall and R. Martin, “Incremental eigenanalysis for classification,”

Proceedings of British Machine Vision Conference, vol. 1, pp. 286–
295, 1998.

[12] Y. Li, “On incremental and robust subspace learning,” Pattern Recog-

nition, vol. 37, pp. 1509–1518, 2004.
[13] D. Ross, J. Lim, R. Lin, and M. Yang, “Incremental learning for robust

visual tracking,” International Journal of Computer Vision, vol. 77, pp.
125–141, 2007.

[14] K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decompo-
sition methods for parabolic problems,” SIAM Journal on Numerical

Analysis, vol. 40, pp. 492–515, 2002.
[15] S. Volkwein, “Lecture notes on proper orthogonal decomposition:

Applications in optimization and control,” CEA-EDF-INRIA Summer

School Numerical Analysis Summer School Model Reduction and

Reduced Basis methods: Application in Optimization, Saint-Lambert-

des-Bois, Frankreich.
[16] L. Sirovich, “Turbulence and the dynamics of coherent structures, Parts

I-III,” Quarterly of Applied Mathematics, XLV, vol. 42, pp. 561–590,
1987.

[17] C. Xu, L. Luo, and E. Schuster, “On the recursive proper orthogonal
decomposition method and applications to distributed sensing in cyber-
physical systems,” The Proceedings of the 2010 American Control

Conference, 2010, pp. 4905–4910, 2010.
[18] G. Golub and C. V. Loan, Matrix Computation (2nd Edition). Bal-

timore: The John Hopkins University Press, 1989.
[19] www.comsol.com, Comsol Multiphysics Model Library. Comsol

Version 3.5, 2008.

