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Abstract— Distributed sensing of cyber-physical systems has
become feasible with recent developments in sensor technology,
wireless communication and distributed computing. Distributed
sensing generates huge amounts of data from the events
occurring in the physical side, which should be promptly
reflected in the cyber side so that actions can be made timely
by the computing systems. Due to the dense temporal-spatial
distribution of the measured data, great challenges have been
posed in terms of data storage, information processing and
communications. The proper orthogonal decomposition (POD)
method is a powerful tool to extract dominant information from
distributed observational data, which has been widely used
in signal processing and pattern analysis of fluid turbulence.
The classical POD method implements dominant information
extraction when the entire data set is known. However, in real-
time measurements, new data is collected and incorporated
into the historic data set at each sampling time. We propose
a recursive proper orthogonal decomposition (rPOD) method
based on the operator perturbation theory, where the accumu-
lative truncation error can be controlled by a gradient search
algorithm. This method is illustrated with two state-of-the-art
problems governed by the heat conduction equation (1D) and
the Navier-Stokes equations (2D) respectively.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are the integration of in-

formation/cyber systems (including measurement, commu-

nication, computation and control) with physical processes.

Embedded computers and networks monitor and control

the physical processes, usually with feedback loops where

physical processes affect computations and vice versa [1].

Distributed sensing is widely used in monitoring physical

processes where huge amounts of data are then generated

from temporally-spatially distributed measurements, greatly

challenging data storage, information processing and com-

munications (e.g., [2], [3], [4]). The proper orthogonal de-

composition (POD) [5] method is a powerful tool to extract

dominant information from distributed observational data,

which has been widely used in signal processing and pattern

analysis of fluid turbulence. The classical POD method

enables dominant information extraction when the entire data

set is known. However, in real-time measurements, new data

is collected and incorporated into the historic data set at

each sampling time. In order to update the dominant modes,

solving the POD problem at each sampling time with newly

collected observational data may be infeasible when the data

vector dimension is quite large.
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Recursive POD methods can be very valuable for systems

controlled in closed loop where the dominant POD modes

vary over time as the system is excited by new inputs.

For instance, receding horizon control of complex physical

processes may benefit from these methods. Traditional ap-

proaches towards the update of the POD modes at each sam-

pling time include the increase of the data set by the newly

measured data, which implies an increasing computational

burden, or the forward shift of the time window defining the

fixed-length data set, which implies the neglect of older data.

A recursive approach could take into account all the historic

data while keeping the computational burden low.

For signals arising in distributed sensing, the spatial di-

mension is usually quite large and the method of snap-

shots [6], [7] is usually needed to reduce the order of the

POD problem. By combining the method of snapshots with

the operator perturbation theory [8], we propose in this work

a recursive POD method. The operator perturbation theory

was previously exploited in [9] to recursively obtain the

eigen-decomposition of time-varying covariance matrices of

signal arrays with restricted dimensions. In order to control

the accumulative truncation error imposed by the operator

perturbation theory, we propose a method based on gradient

search techniques to track the estimate error of the recursive

POD method and if necessary to implement an estimate

correction. In [10], a recursive POD method is proposed

based exclusively on gradient search techniques. This is a

general method that also updates the POD modes by inherit-

ing information from historic data, but the POD mode update

usually takes longer than in the operator perturbation theory

approach. In addition, the search gradient approach does not

provide an update of the corresponding POD eigenvalues.

As an alternative to reshaping the POD modes recursively,

a dimensionality update method has been recently proposed

in [11] to increase or reduce the number of POD modes in

order to achieve certain approximation accuracy. We finally

apply the proposed method to carry out dynamic pattern

extraction of data arising from the simulations of both a 1D

heat conduction model and a 2D fluid past a cylinder model.

We organize this paper as follows. In Section II, we

summarize the POD method including both integral and

matrix versions. In Section III, we motivate the perturbation

formulation in the the POD problem. We summarize the

rPOD algorithms in Section IV and validate the solutions

in Section V. We close this paper in Section VI by stating

conclusions and potential research topics.



II. PROPER ORTHOGONAL DECOMPOSITION

A. Empirical eigenvalue problem

We give a basic introduction of the POD method over

a finite spatial interval Ω ∈ R. Assuming that the spatial-

temporal evolution of a variable over Ω is denoted by x(ξ, t),
where ξ ∈ Ω is the spatial coordinate and t ∈ [tI, tF]
is the time coordinate. We assume that x(ξ, t) is square

integrable for any given t ∈ [tI, tF], i.e.,
∫
Ω
x2(ξ, t)dξ < ∞

or x(ξ, ·) ∈ L2(Ω). We take measurements of the evolution

x(ξ, t) over certain discrete time instants tn ∈ [tI, tF], where

n = 1, 2, . . . , N , and define x(ξ, tn) = xn(ξ) as a snapshot,

for any integer 1 ≤ n ≤ N . All the snapshots {xn(ξ)}
N
n=1

form a “curve” ensemble and the POD problem is to ex-

tract dominant features from all the measurements. Before

mathematically stating the POD method, we introduce two

necessary definitions below:

1) L2–inner product (·, ·)L2 : Given any two snapshots

xi(ξ) and xj(ξ), the inner product is defined as

(xi, xj)L2 =
∫
Ω
xi(ξ)xj(ξ)dξ, and the induced L2–

norm is denoted as ‖ · ‖L2 ;

2) Ensemble average 〈·〉: Given snapshots xn(ξ), n =
1, 2, . . . , N , the ensemble average is defined by

〈xn〉
N
n=1 = 1

N

∑N
n=1 xn(ξ).

Thus, the POD method can be formulated as the following

normalized optimization problem

max
ϕi∈L2(Ω)

〈
|(xn, ϕi)L2 |2

〉N
n=1

‖ϕi‖2
, (1)

i.e., as choosing a basis function ϕi(ξ) (i = 1, . . . , N)
to maximize the averaged projection of the data ensemble

{xn}
N
n=1 onto ϕi. By introducing the orthonormal constraint

for the to-be-obtained basis function ϕi, i.e., ‖ϕi‖ = 1, it is

possible to obtain the following augmented cost function

J [ϕi] =
〈
(xn, ϕi)

2
L2

〉N
n=1

− λi(‖ϕi‖ − 1), (2)

where λi is the Lagrangian multiplier. The optimality con-

dition can be stated as

dJ [ϕi + δiφi]

dδi

∣∣∣∣
δi=0

= 0, ∀ϕi+δiφi ∈ L2(Ω), δi ∈ R. (3)

By defining RNϕi =
∫
Ω
〈xn(ξ)xn(ξ

′)〉
N
n=1 ϕi(ξ

′)dξ′ , we

can rewrite

(RNϕi, ϕi)L2 =

∫

Ω

RNϕi(ξ)ϕi(ξ)dξ =
〈
(xn, ϕi)

2
L2

〉N
n=1

.

Then, we can rewrite J [ϕi] = (RNϕi, ϕi)L2 −
λi [(ϕi, ϕi)L2 − 1] and we can expand the cost variation as

J [ϕi + δiφi]

=(RNϕi, ϕi)L2 + 2δi(RNϕi, φi)L2 + δ2i (RNφi, φi)L2

− λi

[
(ϕi, ϕi)L2 + 2δi(ϕi, φi)L2 + δ2i (φi, φi)L2

]
+ λi.

Therefore, the POD optimality condition (3) becomes

(RNϕi − λiϕi, ϕi)L2 = 0 which is equivalent to the fol-

lowing integral equation
∫

Ω

〈xn(ξ)xn(ξ
′)〉

N

n=1 ϕi(ξ
′)dξ′ = λiϕi(ξ). (4)

This is called the empirical eigenvalue problem and the

optimal basis is given by the eigenfunctions {ϕi(ξ)}
N
i=1

of the integral equation. The integral equation (4) can be

denoted simply by

RNϕi = λiϕi. (5)

B. Numerical solution

Given the spatial grid division ξ1 < ξ2 < . . . < ξM , the

snapshots {xn(ξ)} are replaced by M -dimensional vectors,

{xn}, where xn = [xn(ξ1), . . . , xn(ξM )]T . The eigenvector

ϕi is replaced by an M -dimensional vector vi. Then, the

empirical eigenvalue problem (4) can be discretized as

RN




vi1
...

viM


 = λi




vi1
...

viM


 (6)

where

RN=




〈xn(ξ1)xn(ξ1)〉
N
n=1 . . . 〈xn(ξ1)xn(ξM )〉

N
n=1

...
...

...

〈xn(ξM )xn(ξ1)〉
N
n=1 . . . 〈xn(ξM )xn(ξM )〉

N
n=1


 .

C. Method of snapshots

Usually, the scale of the empirical eigenvalue problem (4)

is huge for high dimensional systems. Sirovich proposed

a numerical procedure that can save time in solving the

eigevalue problem governed by the integral equation (4).

By assuming that the eigenfunctions {ϕi(ξ)}
N
i=1 can be

expressed by linear combinations of the snapshots,

ϕi(ξ) =
N∑

n=1

σn,ixn(ξ), (7)

where the snapshots xn(ξ) are assumed to be linear indepen-

dent. By substituting (7) into the integral equation (4) we can

obtain

∫

Ω

1

N

N∑

n=1

xn(ξ)xn(ξ
′)

N∑

k=1

σk,ixk(ξ
′)dξ′ = λi

N∑

n=1

σn,ixn(ξ),

which can be rewritten as

1

N

N∑

k,n=1

∫

Ω

xk(ξ
′)xn(ξ

′)dξ′xn(ξ)σn,i=λi

N∑

n=1

σn,ixn(ξ). (8)

Therefore, based on (8), we can formulate a matrix eigen-

value problem
∑N

k=1
1
N

∫
Ω
xk(ξ

′)xn(ξ
′)dξ′σn,i = λiσn,i.

III. PERTURBATION OF EIGENVALUE PROBLEMS

A. Motivation of perturbations

Assuming that N0 measurements are available to compute

the autocorrelation operator RN0 and its discrete representa-

tion RN0
, and another Nt new measurements are collected,

then the empirical eigenvalue problem for the updated data

ensemble can be written as
∫

Ω

〈xn(ξ)xn(ξ
′)〉

N0+Nt

n=1 ϕi(ξ
′)dξ′ = λiϕi(ξ). (9)



We note that the autocorrelation kernel can be decomposed

as

〈xn(ξ)xn(ξ
′)〉

N0+Nt

n=1 =
1

N0 +Nt

N0+Nt∑

n=1

xn(ξ)xn(ξ
′) (10)

=
N0 〈xn(ξ)xn(ξ

′)〉
N0

n=1

N0 +Nt

+
Nt

N0 +Nt

∑N0+Nt

n=N0+1 xn(ξ)xn(ξ
′)

Nt

.

When N0 ≫ Nt, it is possible to consider the second term

of the third line in (10) as a small perturbation of the first

term. We define the first term of the second line in (10)

as RN0
(i, j) ≈ 〈xn(ξi)xn(ξj)〉

N0

n=1 (N0 >> Nt). Thus, the

empirical eigenvalue problem (9) can be considered as a

perturbed problem of (4), which can be solved by the method

of snapshots. In the rest of this section, we discuss the

perturbation problems for both integral and matrix equations.

B. Perturbed matrix equation

We assume that the eigen-pair (v0i, λ0i) solves the fol-

lowing eigenvalue problem:

RN0v0i = λ0iv0i, i = 1, 2, . . . ,M, (11)

where the eigenvectors satisfy v
T
0iv0j = δ

j
i (δ

j
i is one if i = j

and zero otherwise). The perturbed eigenvalue problem is

(RN0
+ R̃)(v0i + ṽ0i) = (λ0i + λ̃0i)(v0i + ṽ0i). (12)

By taking into account (11) and neglecting higher order

terms, we can rewrite (12) as

RN0 ṽ0i + R̃v0i = λ0iṽ0i + λ̃0iv0i. (13)

We assume that the perturbed vector ṽ0i can be expressed

as a linear combination of unperturbed eigenvectors,

ṽ0i =
M∑

j=1,j 6=i

cijv0j , (14)

where the constants cij are to be determined. We substitute

(14) into the perturbed equation (13) and note (11) to obtain

M∑

j=1

cijλ0jv0j + R̃v0i =

M∑

j=1

cijλ0iv0j + λ̃0iv0i. (15)

Left multiplying (15) with (v0i)
T

and (v0j)
T

, we obtain

λ̃0i = (v0i)
T
R̃v0i, cij =

(v0j)
T
R̃v0i

λ0i − λ0j

, i 6= j. (16)

Remark 1: When λ0i − λ0j is very small, we either set

an upper bound for |cij | or use a higher order truncation for

the perturbation problem (12). We follow the same rule in

the rest of this paper to compute the coefficient cij .

Remark 2: We can appreciate that it requires huge

amounts memory to compute the correlation matrix R̃ in

(16) for data over very dense spatial grids. By noting the

definition of R̃ below equation (6), we are able to rewrite it

as R̃ = 1
N0+Nt

X̃ X̃ T , where X̃ = [xN0+1, . . . ,xN0+Nt
].

By rewriting R̃, we compute the updates (16) based on

λ̃0i =
v
T
0iX̃ X̃T

v0i

N0+Nt
and cij =

(v0j)
T X̃ X̃T

v0i

(N0+Nt)(λ0i−λ0j)
, i 6= j. Then,

we can avoid the memory issue in storing the matrix R̃.
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Fig. 1. (a) One dimensional distributed temperature sensing. (b) Simulated
data of 1D heat conduction over 0 ≤ t ≤ 150(s).

IV. RECURSIVE POD METHODS

A. Posterior error control

The recursion based on the perturbation theory does not

have an error control criterion. We are motivated by [10]

to consider a posterior error estimation associated with the

recursive POD method. After each recursion, we obtain

the modified POD modes which can be used to check the

approximation error, i.e.,

e(vk) =

N0+Nt∑

n=N0+1

∥∥∥∥∥xn −
l∑

k=1

(
x
T
nvk

)
vk

∥∥∥∥∥

2

. (17)

If the error index e(vk) is higher than expected, it is possible

to modify the modes vk, k = 1, 2, . . . , l, based on the

following gradient search scheme

v
(s+1)
k = v

(s)
k − ε

[
∂e(vk)

∂vk

]T

v
(s)
k

, (18)

where ε is the search parameter and

∂e(vk)

∂vk

=−4

N0+Nt∑

n=N0+1

x
T
nvk

(
xn−

l∑

k=1

(
x
T
nvk

)T
vk

)T

. (19)

In the computations of gradient (19), we have used the fol-

lowing definitions and properties: i- Given a scalar function

f : R
l → R, then ∂f

∂x
=
(

∂f
∂x1

, . . . , ∂f
∂xn

)
; ii- Given any

vector a ∈ R
l and any matrix A ∈ R

l×l, then ∂xT
x

∂x
= 2xT ,

∂aT
x

∂x
= ∂xT

a

∂x
= a

T and ∂AT
x

∂x
= A.
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Fig. 2. Comparison of POD modes based on different methods.
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Fig. 3. (a) PIV scheme of free-surface wave interaction with a horizontal
cylinder, a courtesy of the Fluids Research Laboratory at Lehigh University.
(b) Two dimensional approximation: fluid flow past a cylinder. Channel
dimensions: Ω = [0, 2.2] × [0, 0.41]. Cylinder dimension: radius 0.05m.
Coordinates of the cylinder center: (0.2, 0.205).

Fig. 4. Snapshots of the vorticity at time t = 1s, 2s, 3s and 4s, respectively.

B. Recursive algorithm

We summarize below the algorithm for recursive POD

computation under receding horizon measurements.

1) Compute the autocorrelation matrix RN0
,

RN0(i, j) = 〈xn(ξi)xn(ξj)〉
N0

n=1 , (20)

and the eigenvalues and eigenvectors of the matrix

RN0
denoted by (λ0i,v0i), i = 1, 2, . . . ,M ;

2) Compute the perturbed autocorrelation matrix R̃,

R̃(i, j) =
1

N0 +Nt

N0+Nt∑

n=N0+1

xn(ξi)xn(ξj); (21)

3) Compute the perturbations of both the eigenvalues and

eigenvectors

λ̃0i = (v0i)
T
R̃v0i, ṽ0i =

M∑

j=1

cijv0j , (22)

where cij =
(v0j)

T R̃v0i

λ0i−λ0j
, i 6= j. Then, we obtain the

following recursion v0i = v0i +
∑M

j=1 cijv0j , λ0i =

λ0i + (v0i)
T
R̃v0i, and N0 = N0 +Nt;

4) If e(vk) (defined in (17)) is smaller than error toler-

ance, we accept the recursion result. Otherwise, we

use the gradient searching law (18) to adjust the POD

modes;

5) Go back to Step 2).

V. STATE-OF-THE-ART EXAMPLES

A. Distributed temperature sensing

We consider the distributed temperature sensing of a one

dimensional heat conduction problem shown in Fig. 1(a),

where the mathematical model of the heat conduction over

the domain 0 ≤ ξ ≤ 1 (normalized representation) is

governed by the following equations:




∂x(ξ, t)

∂t
=

∂

∂ξ

[
D(ξ, t)

∂x(ξ, t)

∂ξ

]
+ ε(t)V (ξ, t)x(ξ, t),

x(0, t) =
∂x(1, t)

∂ξ
= 0, x(ξ, 0) = x0(ξ),

where x(ξ, t) represents the spatial (ξ) temporal (t) tempera-

ture distribution, ε(t) is a time-varying coefficient, D(ξ) and

V (ξ) are appropriate spatial functions. Instead of using real

experimental data, we employ the finite element method to

simulate the mathematical model and generate data for the

validation of the rPOD algorithm. We use the following pa-

rameters: D(ξ) = 1
50π2

(
1 + 1

5 sin t
)
, ε(t) = 1

5π2 sin(
π

100 t),
V (ξ, t) = 3

5 + cos( π
10 t) cos(

π
10ξ), x0(ξ) = sin(πξ2).

The temporal-spatial simulation data is shown in Fig. 1(b).

We start by using the first N0 = 25 data measurements to

generate dominant POD modes. In each iteration, Nt = 5
new data measurements are incorporated into the data set

and the POD modes are updated based on the perturbation

theory. We compare in Fig. 2 the first four dominant POD

modes obtained either directly from the entire data set of

100 measurements (denoted by blue circles) or from the



Fig. 5. The first eight POD modes of the snapshots of the vorticity field
based on the entire data (from left to right, from top to bottom).

Fig. 6. The first eight POD modes of the snapshots of the vorticity field
based on the historic data N0 = 60 (from left to right, from top to bottom).

recursions (15 recursions in total). It is shown in the figure

that every POD mode evolves over time except for the second

one. Thus, it is clearly necessary to update the POD modes

with newly measured data. The red arrows in the figure show

the iteration directions. The outmost curves represent the

POD modes obtained recursively based on 100 measurements

(denoted by green crosses).

B. Two dimensional fluid flow past a cylinder

The schematic of a particle image velocimetry (PIV) setup

is shown in Fig. 3 (a). The setup is used to study flow

patterns behind a vertical cylinder with helical windings. The

flow is created in a transparent water channel, and the water

is seeded with light-reflecting particles. The images of the

particles, which are illuminated by a laser, are captured by a

high-resolution camera. These images are then processed on

a computer to yield the global instantaneous flow velocity

Fig. 7. Truncating-perturbation-based POD modes of the snapshots of the
vorticity field (from left to right, from top to bottom).

Fig. 8. POD modes with gradient adjust of the snapshots of the vorticity
field (from left to right, from top to bottom).

measurements. Instead of dealing with experimental data, in

this paper we use a two dimensional model approximation of

the flow to generate the simulation data employed to validate

the proposed rPOD algorithm. A two dimensional fluid flow

past a cylinder is shown in Fig. 3 (b), which is extracted from

the PIV view plane shown in Fig. 3 (a). An adaptive grid

for finite element method (FEM) computation is included

in Fig. 3 (b). The mathematical model is governed by the

viscous incompressible Navier-Stokes equation:

∂xu

∂t
+ xu ∂x

u

∂ξ
+ xv ∂x

u

∂σ
+

∂p

∂ξ
=

1

Re
∆xu, in Q, (23)

∂xv

∂t
+ xu ∂x

v

∂ξ
+ xv ∂x

v

∂σ
+

∂p

∂σ
=

1

Re
∆xv, in Q, (24)

∂xu

∂ξ
+

∂xv

∂σ
= 0, in Q, (25)



where the temporal-spatial domain is defined by Q =
(0, T ) × Ω and Ω = {(ξ, σ)|ξ ∈ [0, 2.2], σ ∈ [0, 0.41]},

x(ξ, σ, t) = {xu(ξ, σ, t), xv(ξ, σ, t)} is the two component

fluid velocity vector, p = p(ξ, σ, t) is the pressure field

and t is the time. The Reynolds number Re is defined by

Re = UD
ν

, where U is the upstream velocity, D is the

diameter of the cylinder and ν is the kinematic viscosity

of the Newtonian fluid flow. The boundary conditions at

the upper and lower walls, and around the cylinder are

assumed to be nonslip. The inlet flow has a velocity profile

(xu, xv) = (U, 0). With the normalized parameters given as

D = 0.1, U = 1.5 and ν = 5 × 10−3, we simulate the

fluid flow dynamics and the snapshots of the vorticity field

ω = ∂xv

∂ξ
− ∂xu

∂σ
in Ω at different times are shown in Fig. 4.

We have Ns = 80 snapshots in total. To represent each

snapshot of the vorticity field, we use a regular Euclidean

coordinate with a size of Nξ = 441, Nσ = 83. Then, each

snapshot is represented by an Nξ × Nσ matrix. In order to

use the POD theory for 1D data, we rearrange each matrix

into a data array of length NξNσ following the rule of one

line after another. The first eight POD modes are shown in

Fig. 5. We use N0 = 60 snapshots as the historic data set to

extract initial dominant POD modes (shown in Fig. 6). We

note that the POD modes of order higher than six (seventh

and eighth are shown in the figures) are much different

from those in Fig. 5. This indicates that the POD modes

evolve over time. Then, for each POD update, we collect

five (Nt = 5) snapshots to enrich the historic data set. After

four recursions, the POD modes are shown in Fig. 7. By

checking the posterior error defined by (17), we note that

the error accumulation is not negligible. Then, we follow

the update law (19) to adjust the POD modes obtained from

the perturbation theory approach, where the search parameter

is set to be ε = 0.01. After four iterations, modifications

are incorporated into the POD modes shown in Fig. 8. In

order to facilitate the comparison of the POD modes obtained

from the entire-data set (Ns = 80), from the historic-data

ensemble (N0 = 60) and from the recursive algorithm based

on 80 measurements, we compare the first four POD modes

in Fig. 9. We can see that the iterations do not perfectly

converge to the POD modes based on the entire-data set, but

show a good compromise between historic-data and entire-

data sets.

VI. CONCLUSIONS

We study in this paper distributed sensing and real time

pattern extraction arising in cyber-physical systems. Classical

POD methods have the capability of extracting dominant

features of collected data. However, in real time measure-

ments, huge amounts of data are collected and updates of

the POD modes are required. With the assumption of small

perturbations, we are able to reformulate the POD problem

at each update time into an operator/matrix perturbation

problem. The first order truncation is used to write the update

law for the eigenvalues and eigenvectors. The update law

provides modifications for the POD modes by only requiring

newly collected data and previously saved POD solutions.
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Fig. 9. Comparison of different POD modes (vector form).

The posterior error estimation is used to control consistent

error accumulation due to the perturbation approximation.

A modification law based on the gradient search technique

is used to adjust the perturbation truncation results. This

method gives accurate POD mode extraction in real time

with relatively low computational cost. It has potential to be

applied in several fields, such as receding horizon control

of distributed parameter systems (e.g., flow past a cylinder),

and dynamic/moving sensing in monitoring and information

acquisition (e.g., water quality monitoring with moving sen-

sors).
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