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Abstract— Optimal control of infinite dimensional systems
is one of the central problems in the control of distributed
parameter systems. With the development of high performane
computers, numerical methods for optimal control design hae
regained attention and achieved significant progress, madst
in the form of open-loop solutions. We consider in this work
an optimal control problem for a bilinear parabolic partial
differential equation (PDE) system. Based on the optimal-
ity conditions derived from Pontryagin’s maximum principl e
for a reduced-order model, and stated as a two-boundary-
value problem, we propose an iterative scheme for suboptinta
closed-loop control design. In each iteration step, we take
advantage of linear synthesis methods to construct a seques
of controllers. The convergence of the controller sequences
proved in appropriate functional spaces. When compared wh
previous iterative schemes, the proposed scheme avoids ezted
numerical computation of the Riccati equation and therefoe
reduces significantly the number of ODEs that must be solved
at each iteration step. A numerical simulation study showshe
effectiveness of this new approach.

I. INTRODUCTION

We state an optimal control problem for the parabolic
system (1) with the following cost functional
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where S(z) and Q(x) are positive weighting functions;
r, and r, are positive definite control weighting factors.
In [5], we have demonstrated the existence of solution for
this optimal control problem, and obtained open-loop con-
trollers using the Sequential Quadratic Programming (SQP)
optimization algorithm. However, the uniqueness of optima
control solution of an arbitrary bilinear infinite dimensal
system can not be guaranteed in general because of the
convexity limitations due to the bilinearity of the problem
Uniqueness of solution can only be proved under special
conditions. For instance, in [6] the authors have proved
unigueness of solution for the optimal control problem of
a bilinear distributed parameter system (DPS) only when
the initial state satisfies specific smallness conditions. |
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_ Physical actuation can appear in parabolic partial differe terms of controllability, it has been demonstrated thanbar
tial equations (PDEs) in three different ways: source termsontrols can always improve the controllability obtaingd b
(interior control), boundary conditions (boundary cofjtro just using either interior or boundary controls (see, 4.,

and diffusivity coefficient (diffusivity control). Inteor and

and references therein).

boundary controls have been studied extensively, and manyControl of bilinear parabolic PDE systems arises in dif-
approaches to PDE control have been proposed (e.g., [1], [&kent application scenarios. In the control of the torbida
and references therein). Studies on diffusivity control ogurrent density radial profile in magnetically confined éusi
PDEs are however more scarce (e.g., [3], [4]). In this papglasmas [8], the dynamics of the plasmas transport are gov-
we consider an optimal control problem for a paraboli@rned by a singularly perturbed system (see, e.g., Chapter V
system with diffusivity and interior actuation mechanismsand Chapter VIl in [9]). By exploiting the time scale separa-

We consider a 1D parabolic system over=
x < L,to <t <ts}, which is governed by

{(z,1)
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2(0,t) = 2(L,t) =0, z(x,0) =
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wherez(z,t) represents the system statgt) andv(t) the
interior and diffusivity controls respectively, and(x) the
initial distribution. For sake of compatibility, it is nessary
to assume thap(0) = ¢(L) = 0. We assume thaf(z),
A(z) and(x) are positive functions.

tion in the evolution of the kinetic and magnetic variablés,

is possible to obtain a magnetic diffusion equation degagib
the evolution of the current profile and admiting diffusyyit
interior and boundary actuation. Physical actuators sich a
plasma total current, line-averaged density and non-itiic
total power entering the diffusivity-interior-boundargrarol
terms are used to steer the plasma current density to a
desired profile in a designated time period [5]. In [10],
a saturated flow through a one-dimensional idealized tube
packed with soil is considered. The soil contains contantina
samples and a fluid is pumped through the tube (from left
to right) to remove the contaminants. The velocity of the
fluid pumped into the tube is considered as the control
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convective-diffusive PDE system governing the contaminan
concentration. In [3], the viscosity coefficient is consatk
as a control function for the Burgers’ equation.



In the design of optimal control strategies for infinite 1. POD REDUCED ORDER MODELING
dlmenS|onaI_ systems,_ reduced orde_r modeling techr.uquesGiVen a collection of function¥ = {z(z,,)} = {z;(z)},
play a crucial role. Different numerical methods of lines; 1.9

- o ) 4: ,2,...,n on the domain0 < z < L, the goal of
(MOL), based on the finite element, finite difference an he POD process is to produce an optimal orthogonal set of

spectral discretization for the spatial coordinate, hagenb ;s functions’; _ ] <
used to compute the optimal open-loop controls for parabolj Pop = {1(x),Y2(), ..., Yi(x)}, (1 < n)

N ¢ to approximate the space spanned by the given collection.
distributed parameter systems (see, e.g., [11]). In th®Da \ye |l refer to the set as the data collection and the set

we use _the proper Qrthog.onal decomp_osition (POD) methquOD as the POD basis. For any two functiofigz) and
for  biinear parabolic PDE system. The POD method (%) M EtherV, or Viop, we define thei inner product
is an efficient reduced order modeling (ROM) techniqueﬁls <f_i’fj> = Jo fifydz, and the mdLucgd nor_m of any
used to obtain LDDS's from data ensembles which aris@ncuohn fi(@) 6}S||fi|‘ﬁ2 = <”f“fl> = J, fidz. Given ar;]y
from numerical simulation or experimental observatione ThS"aPS Otz,-é(lx) rcf>m the cg_ ection se:V, "t‘)’e assume that
POD method has been widely used and proved succeds!S Possible to form arl-dimensional subspacerop =
ful to discover coherent structures from complex physicalP®? (V1 ¥2,- ... ¥} to span it, i.e.z; ~ 35, (), Yi)vi.
processes (see, e.g., [12], [13]). In [13], the POD approaéﬂqe POD problem is to find the séfop minimizing the

. . ~ l ) ) o
is applied to derive a reduced-order model of the Burgeré\pprox"ﬂat'On error ot ~ 57, (2, ¥i) i 1.€.,

equation, and then the associated optimal control is sdldyed n . 2
using the sequential quadratic programming (SQP) method. min J, = Z 2 — Z<Zﬂ" Wi)b; (4)
Fundamental aspects of POD methods applied to parabolic Yi = =1 2
problems, such as error estimates of Galerkin-POD for both . . .
linear and nonlinear parabolic systems, are discussedHtn [1SUbJeCt to the orthogonality condition

By using the POD model reduction technique, the obtained 1, i=j,
reduced order system in this work is a bilinear system. (Wisv5) = bij :{ 0, i+#j. ()
Generally, for the numerical solution of the optimal cohtro ) o )
problem of a finite dimensional bilinear system, a converge/e first simplify the cost functional, (1, ..., 4),
scheme based on quasi-linearization has been proposed in Ty (Y1, )
[15], and references therein, to solve the optimality cendi n . .
tions successively. The algorithm in [15], constructs dine _ L B b Vs
systems by updating system and input matrices at each ;<ZJ ;%’%W“% ;<Zﬂ7wl>¢z>

iteration step. The linear state-costate duality strectof

the optimality conditions is preserved at each iterati@p st —
Then, Riccati equations are derived to establish succes-
sive feedback laws. Similarly, instead of solving a Riccati
equation iteratively, a Lyapunov equation is solved at each  _
iteration step in [16]. In this paper, we present a new itenat
scheme based on the optimality condition, which introduces L Lo
an inhomogeneous term in the successive linear stateteostghe.refore’ to solve the m|r!|m|zat|o.n .pro.blem (4), it is
duality structure. In comparison to our previous work [17],equwalent to solve the following maximization problem
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the new proposed scheme avoids repeated computations of n 1
the Riccati equation at each iteration step by introducimg amax Jp = Z (zj,10:)?, subject to : (v, ¥;) = ;5. (7)
iterative scheme for the inhomogeneous term involved in the”" j=114=1

feedback law, and guarantees convergence to the solutionQf . ; / n /
' . ) introducing the operatork (z, =>7 2 ;
the two-boundary-value problem derived from Pontryagm’sE%; g P (@,2) = 2jm 2/(@)2 (@)

principle and Ry = fOL K(z,2")(2')da’, we can rewriteJg =
b l . .
This work represents a novel effort to connect nonlin2_i—1 (R:, ¢:). Therefore, for any POD basis functiene
ear parabolic PDE feedback controls and iterative contréfrop, we formulate the following optimization problem
methodologies using model reduction. The paper is orgdnize J — R ubiect to - 1 8
as follows. In Sectionll, we discuss the POD method to max Jpop = (RY,¢),  subjectto: (,9) =1. (8)
obtain reduced order models. In Section I, Galerkin proje
tion is discussed based on a test function set composed ¥, 1) — A1b,7), where is an Lagrange multiplier, and
dominant POD modes. In Section IV, we propose an iterativecc me that _ wi +ny'. Then we can computbpo,g(’n)
convergent scheme _based on the Picard approximation \%eren is an arbitrary real number and is an arbitrary
compute the suboptimal control laws. The convergence Qf iation with respect to the optimal solutiaft € Vpop.

tr_le iteration algorlthm is demonst_rated in Section V Th he optimality condition then becomegLPgD(ﬁ)‘ —
simulation studies are presented in Section VI. Section VI n n=0

closes the paper by stating the conclusions. 2(Ry* — Xw*,w’) = 0. We note thaty’ is arbitrary, then

We define the associate Lagrange functiodalop =



the optimality condition becomes the following eigenvalue V. BILINEAR QUADRATIC OPTIMAL CONTROL

problem The finite horizon optimal control problem defined in (3)

I .
Ry = Mp. o / K (2,2") (@' )da' = Mp(z).  (9) can now be rewritten as,1 .,

0
For each POD basis functiott, we assume that it can 13151 J__y () Sy(ts)+ Q/t [y (O)Qy @ +riu+ruv?] dt,
be expressed by the observations (or snapshgts)y = ’
1,2,...,n, ie, 1 = Y7 apz, which means that it where S; =[S x)pj(z)de and Qi =
is p053|ble to find a combination of the observation dat§ Q)i ()Y (v)dz, i,j = 1,,,,,1_
(i.e., to determine the coefficients,) to extract dominant  |ntroducing the Lagrange multipligr € R¢, we can define
characteristics. Now we substitute the snapshots expansipe system Hamiltoniaf{(y, u, v, p) = %(yTQy + ryu? +
¥ = >,y arzi into (9), then we can obtain rov?) + p? (Ay + Fu+ Kyv), where A = K + G. The

minimizing control law is given by

Z "dx ak] zj(x =\ Z a;zj(z).  (10)
j= 1|Jc 1/ %—Z:Oéu*(t):—rglFTp,
By introducing the following matrix notatlon OH (17)

=0=v"(t) = —r, ' (Ky)"p

L v
Cjk = () zp(a)da', a= et (A . . - : o
ik /0 z(@)a@)de’, a=layag,oan] (1) Thus, using the maximum principle, a canonical optimality
then we can rewrite (10) as condition can be obtained,
. . _OH a— -1 T
3 chkak /\aJ] 2(p) =0, ie, Ca=a (12) V=p ~ A FroF e - Ky (Ky)Tp
i=1 Lk=1 : OH T -1 r et (18)
whereC=[Cj;] € R"*™. SinceC is a nonnegative Hermitian P= oy —Qy —ATp+r, (Ky) pKp,
T ST
matrix, i.e.,C = C7, it has a complete set of orthogonal y(to) = yo, plts) = Sy(ts).
eigenvectorgay, ...,a,) and each POD basis function can = ) }
be expressed as; = [z wlani=1,2,...,L which is a nonlinear two-point boundary value problem
’ ’ ’ (TBVP) and usually impossible to be solved explicitly.
IIl. POD/GALERKIN METHOD To compute the optimal control for the bilinear system
We lety; € Vi, be the test function, whergs,, =  (14), we propose the following successive scheme based on
span{i1,...,¢} is the test function space spanned by theéhe Picard approximation,
POD modes. Then, we multiply both sides of (1) by the test (k1) (k1) (k1) *
function ¢;(z) € Vjop, for j =1,...,1, and integrate by y = Ay - Wp -G, (19)
parts taking into account that; (0) = 1;(L) = 0, to obtain pFtD) = _Qyhth) _ AT+ o k), (20)
the foIIowmg weak form y(kﬂ)(to) _— p(kﬂ)(tf) _ Sy(kﬂ)(tf)’ 21)
Loz 0z (“)%» ) _ )
aﬂ’ (z)dz + (1 + U) 92 o dz where the superscrifc) denotes the iteration humber and
(13) W = FryiFT = WT, GO = Ky®p-t [Ky®]T p),
/ E()uy(z)dx +/ M)z (2, 1)) (z)dx H®) = p-1 [Ky(k)]Tp(k)KTp(k). To solve the linear two

) boundary value problem (19)-(21), it is standard to assume
We implement the Galerkin approximation(z,t) =~ pktl) = py(ktl) 4 o(k+1)  pT — P and to obtain the

y(z,t) = Zﬁc L o (t)r(x) and substitute this eXpreSS"’”equaﬂons
for z(z,t) into the weak form (13). Then, we can obtain the

following finite dimensional system: P=—-PA-ATP+PWP-Q, P(t;)=S5,
d (kD) (A WP\ gD o pa®) o g k) 22
== (K +G)y + Kyu(t) + Fu(t), (14) q ( ) atT + 0", (22)
dt q(kﬂ)(t )=0
f )
where

1 D(C;) O where
e A T L B [y ] [Py 4 4],

Fyz/ofl(x)w]( Ydz, G= /1( s (2)bx () da, (16) H® — 7,@—1 [Ky(k):|T [Py(k) " q(k)} KT [Py(k) n q(k)} .

where y(t) = (cu(t),...,a(t))" €R!, G,K € R\ The Then at each iteration step, the quasi-closed-loop system
vector y(t) is the f|n|te dimensional approximation, with hecomes

respect to the obtained POD modes, of the variabitgt) in (ka1 - 1 1 N
(1). The initial values are given by, (0) = (z(-,0),¢,),j =  J 0 = (A= WTP)yED — gt — o), (23)
1127"' 7l' y(k+1)(t0) =Yo.



When the iteration indegk) is large enough, we can achievewhere y1(t) = [[eA"WPIEDW|, 4(t) =
the following feedback laws, [eA=WPIE=)| qg(t) = e(AfWP)T(HUDH and

e(A=WP)T (t—7)

u=—r, ' FT'(Py+q*), v=—r, " (Ky)"(Py + ¢*),  (24) u(t) =

| =7.
wherelimy .. ¢ = ¢* We rewriteG®) =r L KYW KT [Py(®)4+¢*)] andH *) =
e ' —1(k _15(k
Remark 1: The solution of the Riccati matrix equation " 15§y)KT[PY(k)4;J(k)}+7’U 15§q)K§ [Py™® + ¢®)], where
(P-equation) actually requires the solution &f coupled Y®) = y(®) [y(M]" 5% — [y®)]" KT Py*) and sy =
ODEs, wherd denotes the system dimension. The advantagﬁ(k)]T KT¢®) . Now we evaluates*) —G*=1) and H*) —

of this new algorithm resides on the fact that it is notg(x—1) in terms ofg®) — g-=1) andy® — y(k=1),
necessary to compute the Riccati equation in each iteration

step. Only the vector equation for the feed-forward control HG(k) - GO H

term (g-equation) needs to be solved iteratively in each step. rol

However, the solution of this equation requires the solutio < HK {Y(k) _ Y(kq)} KT {Py(k) I q(k)} H
of only [ coupled ODEs. -

i HKy(k—l)KTp [y<k+1> _ yoc)} H
V. CONVERGENCESTUDY

. o . (k=1) T | (k) _ (k=1)
In the rest of this section, it remains to prove the con- + HKY K {q q H” (28)
vergence of the iteration scheme in solving the optimal *) (he1) 5 (k=17 [ (1T
control problem. Namely, we will show the following limits Where Y™ — Y . = [WPyEDIW]T +
in appropriate functional spaces y*= [y®)—y(E=D]"  Then, we have

i k) — v* i (k) — g% 25 Gk _qk=1)

Y T T (25) | m (PN [y [ir® =gt
The associated spaces are three Banach spaces U(k)
(see, eg. [15, [18) B =  C(lto, 17 RY), wherey( () = [[ly®]| + [y D] K[ Py +¢® |+
By = C([to, 7, R, By = C((to, ], R) with norms ||| || [[Y*~D, A8 (1) = || ]> [y D).
[¥lls: = subsepg,e,) 1Y) 1Plw. = supsepg e 1P()]l Similarly, we have
and ||, = sup,cps, 1, lla(s)[, wherelly|| = /31, v2, |H® — HE=D)|
1P| = /32— P2 and g = \/3i_, 42 To show (25), !

we only need to show that botfy®)} and {P*)} are < ‘5§§) — o) 4 50k 5§’,§_1)‘ KT pr(k) + q(k)H
Cauchy sequences. Thus, the convergence follows due to the o1 b1 T A el
completeness of the Banach spaces. The convergence proof H‘%y )‘ + Mq )H 157 P Hy( "=y )H

is based on the contraction mapping theorem for Banach k—1 k—1 T k k—1
spaces [19]. + [‘5§y )’ + ‘5§q )H I Hq( "= )H (29)
Theorem 1:If the _cont_rol weight fa(_:torrv iS Iarge_ Noting sk _ sk-1) [y(k) —y(’“*”]TKTPy(’“) n
enough, then the iteration scheme is convergent, ie, "= 77 % ., *) (k-1)
limg o v = y*, limg oo g% = g [y*Y]" K PT[y( ) —y(k=1)] an(élr Syqd — Oyg —
Proof: By direct computations, we can obtain [y®) — yB=D]7 KT 4 [yk=D]7 KT [¢k) — gk=D]

then we can obtain

5(k Y H(k) H(k— )
! k — k _
H—1H<7§ ) Hy(k)_y(k 1)H+,7§ ) Hq(k)_q(k 1)H ,

&) o6
__/t;z(AWP)(tT){W{q(kJrl)_q(k)}+[G(k)_G(k1)}} o

whereﬁ“(t), wék) (t) can be obtained by direct computa-

and , tions
f
(k+1) _ (k) _ _ (A-wP)T (t—7) (k) _((k—1) k
q q\"= /t e P [G G } dr ”Y§ )(t)
. /tf;(A_Wp)T(t_T) () dr ] e [ TG RN M)
t |0 [+{o 0 [ 1T I NPy S+ @ | KT
Then, we compute the norms, (30)

ts (k)
s e i - A0
o = K| [Py ® + | 1Py *-D)

t
gl oo -
to

k
O

o0 1K1 (31)



o [B1,..., 8", with e > I. The system matrices can be ob-
tained by following the same lines of (15)-(16) by replacing

_ the POD modes with harmonics basis functions. By noting
Fig. 1. Closed-loop control system. that

Reternce ? SmS—Y T P— Tl B where the system state vector is defined By =

. . . 1 1
Therefore, by takings-norms both sides, we obtain a; = / o, )i () da = Zﬂj/ &, (@)vi(a)de
0 0

[y D — y g5, ] T [ ly® — y =D, }

: <= | 32
[ lg#+) — g m, | =70 | g® — gV, | D l 1
_ and introducingC € R™*¢, [C],; = [; ¢;(2)¢i(x)dz, then
where the elements of the transform matfixare given by  we havey = CY. Thus, we can formulate the feedback laws
in terms of the new state vectdf,

Ti = max ()7 (T)} : (33)
o ® u=—r, 'FT (PCY + ¢*), v=—r, Y (KCY)T (PCY+q").
Tio= max [1(r) + 3 ()], (34)
T o,tf| &

) " " Therefore, the closed loop system becomes
D= max [ () +umd @], @G5

Te[to,tf] L dY —1 T *
i ® ® M—— = AY —r,'FFT (PCY +¢*)
Tyy = max |y3(r) (1) + 7a(r)n (7’)] . (36) e
T€lto,ts] L —r'!KY(KCY)" (PCY +¢*). (38)

Therefore, if all of the eigenvalues df’, o(T) satisfy
r,tmax|o(T)| < 1, then we can conclude that the se
quences(y®1 and {¢(*)} are convergent. [ ]
Remark 2:In the proof of Theorem 1, we note that the
transformation matrix” calculated in (33)-(36) depends on
the iteration index k) and also includes the evolutions pf
andgq. Although it is difficult to compute the eigenvalues o
T explicitly in each iteration step, to ensure convergence
the iteration scheme we can just make the control weighti
factor r, large enough. It is possible to prove that a larg
enoughr, also guarantees boundness for the maffix
Increasing the value of, is also a way to ensure| < 1.

We first simulate the system (1) ovey=0 <t <t; =50
with ¢(z) = 1073, £(z) = sin(nz), AM(z) = 0, p(z) =
S0 _ sin(krz) andu(t) = v(t) = 0 to obtain the POD
modes. The system evolution and the dominant POD modes
are shown in Fig. 2 and Fig. 3, respectively. By using the first
ffour POD modesi(= 4) we can construct a bilinear system
nd the approximation error is shown in Fig. 4. In validating
nt e iteration algorithm, we choosg, = 1, r, = 15, S =
.5I and Q = 0.011. The iteration scheme converges and
the obtained feedback laws can enhance the dissipation of
the system evolution. The simulation of the evolution of the
closed-loop PDE system is shown in Fig. 5 using 12 sine
VI. SIMULATION STUDY wave basis functions in the pseudo-spectral approximation
A comparison of the spatial profiles of the controlled and

Closing the control loop with the iteration-based feedbackncontrolled cases at the final time is shown in Fig. 6.
laws is not as direct as in the finite dimensional case (see,

Fig. 1). After theN-th iteration, we can obtain the feedback

VII. CONCLUSIONS
controllers

In this paper we study a controlled parabolic system with
two types of actuation: diffusivity and interior controBy

based on (24), wherg(t) is the finite-dimensional approxi- using the POD technique, we derive a low dimensional
mation, with respect to thePOD modes, of (z, t). Before dynamical system which governs the dominant dynamics of

being able to substitute the feedback laws into the origind1€ Original parabolic system. The reduced order systerh is o
system (1), with the physical domain defined o@r z < a bilinear form. We propose a convergent successive scheme
L = 1), we need to rewrite the control laws in “terms offased on the Picard approximation to compute the solution

2(z,1), or at least in terms of a higher-order approximatior?f a finite-time sub-optimal control defined for the reduced-
Y (t) of 2(z, ). order bilinear system. This new algorithm avoids repeated

We use the pseudo-spectral method to simulate the norp‘gmerical computation of the Riccati equation at each iter-
linear PDE system. Assuming that the evolution can b tion step by introducing an iteration scheme for the feed-
expanded by a series of harmonic functiongz,t) ~ orward control component. In terms of the number of ODEs
S B,(t)6,(x), where g, (z) — sin(jrz), then we can 'eduired to solve the Riccati matrix equationl-gquation)

Jj= ’ 1 _ . . .
derive a higher-order finite dimensional system using th@nd the feed-forward vector equatiopdquation), this new
Galerkin projection method method can decrease the number of ODEs to be computed

at each iteration step froi? to [. Simulation studies show
Md_Y — AY 4 KYo™ £ Fu®™ 37) the effectiveness of the model reduction technique and the
dt ’ successive sub-optimal control laws.

u(N):—TllFT[Perq(N)} ,U(N)=—r51(Ky)T{Py+q(N)} :



Evolution of the uncontrolled PDE system
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Fig. 2. Uncontrolled dynamics of(z,t) in system (1).
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Fig. 3. The first four { = 4) dominant POD modes.

Error of dynamic reconstruction
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Fig. 4. Error between PDE and reduced-order ODE.

Evolution of the closed—-loop PDE system

z(x,t)

Time t Space x

Fig. 5. Closed-loop dynamics ef(z, t).

Result comparison
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Profiles
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Fig. 6. Comparison of final spatial profilegz,¢¢) (t; = 50). The initial
spatial profilez(x,to) (to = 0) is also shown.
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