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Abstract— Optimal control of infinite dimensional systems
is one of the central problems in the control of distributed
parameter systems. With the development of high performance
computers, numerical methods for optimal control design have
regained attention and achieved significant progress, mostly
in the form of open-loop solutions. We consider in this work
an optimal control problem for a bilinear parabolic partial
differential equation (PDE) system. Based on the optimal-
ity conditions derived from Pontryagin’s maximum principl e
for a reduced-order model, and stated as a two-boundary-
value problem, we propose an iterative scheme for suboptimal
closed-loop control design. In each iteration step, we take
advantage of linear synthesis methods to construct a sequence
of controllers. The convergence of the controller sequenceis
proved in appropriate functional spaces. When compared with
previous iterative schemes, the proposed scheme avoids repeated
numerical computation of the Riccati equation and therefore
reduces significantly the number of ODEs that must be solved
at each iteration step. A numerical simulation study shows the
effectiveness of this new approach.

I. I NTRODUCTION

Physical actuation can appear in parabolic partial differen-
tial equations (PDEs) in three different ways: source terms
(interior control), boundary conditions (boundary control)
and diffusivity coefficient (diffusivity control). Interior and
boundary controls have been studied extensively, and many
approaches to PDE control have been proposed (e.g., [1], [2]
and references therein). Studies on diffusivity control of
PDEs are however more scarce (e.g., [3], [4]). In this paper
we consider an optimal control problem for a parabolic
system with diffusivity and interior actuation mechanisms.
We consider a 1D parabolic system overΩ = {(x, t) : 0 ≤
x ≤ L, t0 ≤ t ≤ tf}, which is governed by

∂z

∂t
=

∂

∂x

(
ζ
∂z

∂x

)
+λ(x)z+ξ(x)u(t)+v(t)

∂

∂x

(
ζ
∂z

∂x

)
,(1)

z(0, t) = z(L, t) = 0, z(x, 0) = ϕ(x), (2)

wherez(x, t) represents the system state,u(t) andv(t) the
interior and diffusivity controls respectively, andϕ(x) the
initial distribution. For sake of compatibility, it is necessary
to assume thatϕ(0) = ϕ(L) = 0. We assume thatζ(x),
λ(x) andξ(x) are positive functions.
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We state an optimal control problem for the parabolic
system (1) with the following cost functional

min
u,v

J =
1

2

∫ L

0

S(x)z2(x, tf )dx

+
1

2

∫

Ω

Q(x)z2(x, t)dxdt +
1

2

∫ tf

t0

(
ruu

2 + rvv
2
)
dt,

(3)

where S(x) and Q(x) are positive weighting functions;
ru and rv are positive definite control weighting factors.
In [5], we have demonstrated the existence of solution for
this optimal control problem, and obtained open-loop con-
trollers using the Sequential Quadratic Programming (SQP)
optimization algorithm. However, the uniqueness of optimal
control solution of an arbitrary bilinear infinite dimensional
system can not be guaranteed in general because of the
convexity limitations due to the bilinearity of the problem.
Uniqueness of solution can only be proved under special
conditions. For instance, in [6] the authors have proved
uniqueness of solution for the optimal control problem of
a bilinear distributed parameter system (DPS) only when
the initial state satisfies specific smallness conditions. In
terms of controllability, it has been demonstrated that bilinear
controls can always improve the controllability obtained by
just using either interior or boundary controls (see, e.g.,[7]
and references therein).

Control of bilinear parabolic PDE systems arises in dif-
ferent application scenarios. In the control of the toroidal
current density radial profile in magnetically confined fusion
plasmas [8], the dynamics of the plasmas transport are gov-
erned by a singularly perturbed system (see, e.g., Chapter VI
and Chapter VII in [9]). By exploiting the time scale separa-
tion in the evolution of the kinetic and magnetic variables,it
is possible to obtain a magnetic diffusion equation describing
the evolution of the current profile and admiting diffusivity,
interior and boundary actuation. Physical actuators such as
plasma total current, line-averaged density and non-inductive
total power entering the diffusivity-interior-boundary control
terms are used to steer the plasma current density to a
desired profile in a designated time period [5]. In [10],
a saturated flow through a one-dimensional idealized tube
packed with soil is considered. The soil contains contaminant
samples and a fluid is pumped through the tube (from left
to right) to remove the contaminants. The velocity of the
fluid pumped into the tube is considered as the control
variable which appears as the convective coefficient in the
convective-diffusive PDE system governing the contaminant
concentration. In [3], the viscosity coefficient is considered
as a control function for the Burgers’ equation.



In the design of optimal control strategies for infinite
dimensional systems, reduced order modeling techniques
play a crucial role. Different numerical methods of lines
(MOL), based on the finite element, finite difference and
spectral discretization for the spatial coordinate, have been
used to compute the optimal open-loop controls for parabolic
distributed parameter systems (see, e.g., [11]). In this paper,
we use the proper orthogonal decomposition (POD) method
to obtain a low dimensional dynamical system (LDDS)
for a bilinear parabolic PDE system. The POD method
is an efficient reduced order modeling (ROM) technique
used to obtain LDDS’s from data ensembles which arise
from numerical simulation or experimental observation. The
POD method has been widely used and proved success-
ful to discover coherent structures from complex physical
processes (see, e.g., [12], [13]). In [13], the POD approach
is applied to derive a reduced-order model of the Burgers’
equation, and then the associated optimal control is solvedby
using the sequential quadratic programming (SQP) method.
Fundamental aspects of POD methods applied to parabolic
problems, such as error estimates of Galerkin-POD for both
linear and nonlinear parabolic systems, are discussed in [14].

By using the POD model reduction technique, the obtained
reduced order system in this work is a bilinear system.
Generally, for the numerical solution of the optimal control
problem of a finite dimensional bilinear system, a convergent
scheme based on quasi-linearization has been proposed in
[15], and references therein, to solve the optimality condi-
tions successively. The algorithm in [15], constructs linear
systems by updating system and input matrices at each
iteration step. The linear state-costate duality structure of
the optimality conditions is preserved at each iteration step.
Then, Riccati equations are derived to establish succes-
sive feedback laws. Similarly, instead of solving a Riccati
equation iteratively, a Lyapunov equation is solved at each
iteration step in [16]. In this paper, we present a new iteration
scheme based on the optimality condition, which introduces
an inhomogeneous term in the successive linear state-costate
duality structure. In comparison to our previous work [17],
the new proposed scheme avoids repeated computations of
the Riccati equation at each iteration step by introducing an
iterative scheme for the inhomogeneous term involved in the
feedback law, and guarantees convergence to the solution of
the two-boundary-value problem derived from Pontryagin’s
principle.

This work represents a novel effort to connect nonlin-
ear parabolic PDE feedback controls and iterative control
methodologies using model reduction. The paper is organized
as follows. In Section II, we discuss the POD method to
obtain reduced order models. In Section III, Galerkin projec-
tion is discussed based on a test function set composed by
dominant POD modes. In Section IV, we propose an iterative
convergent scheme based on the Picard approximation to
compute the suboptimal control laws. The convergence of
the iteration algorithm is demonstrated in Section V. The
simulation studies are presented in Section VI. Section VII
closes the paper by stating the conclusions.

II. POD REDUCED ORDER MODELING

Given a collection of functionsV = {z(x, tj)} = {zj(x)},
j = 1, 2, . . . , n on the domain0 ≤ x ≤ L, the goal of
the POD process is to produce an optimal orthogonal set of
basis functionsVPOD = {ψ1(x), ψ2(x), . . . , ψl(x)}, (l ≤ n)
to approximate the space spanned by the given collection.
We will refer to the setV as the data collection and the set
VPOD as the POD basis. For any two functionsfi(x) and
fj(x) in either V or VPOD, we define their inner product
as 〈fi, fj〉 =

∫ L
0
fifjdx, and the induced norm of any

function fi(x) as ‖fi‖L2 = 〈fi, fi〉 =
∫ L
0 f2

i dx. Given any
snapshotzj(x) from the collection setV , we assume that
it is possible to form anl-dimensional subspaceVPOD =
span {ψ1, ψ2, . . . , ψl} to span it, i.e.,zj ≈

∑l
i=1〈zj , ψi〉ψi.

The POD problem is to find the setVPOD minimizing the
approximation error ofzj ≈

∑l
i=1〈zj, ψi〉ψi, i.e.,

min
ψi

Jb =

n∑

j=1

∥∥∥∥∥zj −
l∑

i=1

〈zj , ψi〉ψi

∥∥∥∥∥

2

L2

(4)

subject to the orthogonality condition

〈ψi, ψj〉 = δij =

{
1, i = j,

0, i 6= j.
(5)

We first simplify the cost functionalJb (ψ1, . . . , ψl),

Jb (ψ1, . . . , ψl)

=

n∑

j=1

〈
zj −

l∑

i=1

〈zj , ψi〉ψi, zj −

l∑

i=1

〈zj , ψi〉ψi

〉

=

n∑

j=1

[
〈zj , zj〉 − 2

l∑

i=1

〈zj , ψi〉
2 +

l∑

i=1

〈zj , ψi〉
2

]

=

n∑

j=1

[
〈zj , zj〉 −

l∑

i=1

〈zj , ψi〉
2

]
. (6)

Therefore, to solve the minimization problem (4), it is
equivalent to solve the following maximization problem

max
ψi

JB =

n∑

j=1

l∑

i=1

〈zj , ψi〉
2, subject to : 〈ψi, ψj〉 = δij . (7)

By introducing the operatorsK (x, x′) =
∑n

j=1 zj(x)zj(x
′)

and Rψ =
∫ L
0 K(x, x′)ψ(x′)dx′, we can rewriteJB =∑l

i=1〈Rψi, ψi〉. Therefore, for any POD basis functionψ ∈
VPOD, we formulate the following optimization problem

max
ψ

JPOD = 〈Rψ, ψ〉, subject to : 〈ψ, ψ〉 = 1. (8)

We define the associate Lagrange functionalLPOD =
〈Rψ, ψ〉 − λ̃〈ψ, ψ〉, whereλ̃ is an Lagrange multiplier, and
assume thatψ = ψ∗+ηψ′. Then we can computeLPOD(η),
whereη is an arbitrary real number andψ′ is an arbitrary
variation with respect to the optimal solutionψ∗ ∈ VPOD.
The optimality condition then becomesdLPOD(η)

dη

∣∣∣
η=0

=

2〈Rψ∗ − λ̃ψ∗, ψ′〉 = 0. We note thatψ′ is arbitrary, then



the optimality condition becomes the following eigenvalue
problem

Rψ = λ̃ψ, or

∫ L

0

K (x, x′)ψ(x′)dx′ = λ̃ψ(x). (9)

For each POD basis functionψ, we assume that it can
be expressed by the observations (or snapshots)zj, j =
1, 2, . . . , n, i.e., ψ =

∑n
k=1 akzk, which means that it

is possible to find a combination of the observation data
(i.e., to determine the coefficientsak) to extract dominant
characteristics. Now we substitute the snapshots expansion
ψ =

∑n
k=1 akzk into (9), then we can obtain

n∑

j=1

[
n∑

k=1

∫ L

0

zj(x
′)zk(x

′)dx′ak

]
zj(x)=λ̃

n∑

j=1

ajzj(x). (10)

By introducing the following matrix notation

Cjk =

∫ L

0

zj(x
′)zk(x

′)dx′, a = [a1, a2, . . . , an]
T (11)

then we can rewrite (10) as
n∑

j=1

[
n∑

k=1

Cjkak − λ̃aj

]
zj(ρ̂) = 0, i.e., Ca = λa, (12)

whereC=[Cjk] ∈ R
n×n. SinceC is a nonnegative Hermitian

matrix, i.e., C = CT , it has a complete set of orthogonal
eigenvectors(a1, . . . ,an) and each POD basis function can
be expressed asψi = [z1, . . . , zn] ai, i = 1, 2, . . . , l.

III. POD/GALERKIN METHOD

We let ψj ∈ V ∗

POD be the test function, whereV ∗

POD =
span{ψ1, . . . , ψl} is the test function space spanned by the
POD modes. Then, we multiply both sides of (1) by the test
function ψj(x) ∈ V ∗

POD, for j = 1, . . . , l, and integrate by
parts taking into account thatψj(0) = ψj(L) = 0 , to obtain
the following weak form

∫ L

0

∂z

∂t
ψj(x)dx + (1 + v)

∫ L

0

ζ
∂z

∂x

∂ψj

∂x
dx

=

∫ L

0

ξ(x)uψj(x)dx +

∫ L

0

λ(x)z(x, t)ψj(x)dx.

(13)

We implement the Galerkin approximationz(x, t) ≈
y(x, t) =

∑l
k=1 αk(t)ψk(x) and substitute this expression

for z(x, t) into the weak form (13). Then, we can obtain the
following finite dimensional system:

dy

dt
= (K +G)y +Kyv(t) + Fu(t), (14)

where

Mjk=

∫ 1

0

ψj(x)ψk(x)dx=δjk ,Kjk=−

∫ 1

0

∂(ζψj)

∂x

∂ψk

∂x
dx, (15)

Fj=

∫ 1

0

ξ(x)ψj(x)dx,Gjk=

∫ 1

0

λ(x)ψj(x)ψk(x)dx, (16)

where y(t) = (α1(t), . . . , αl(t))
T ∈ R

l, G,K ∈ R
l×l. The

vector y(t) is the finite dimensional approximation, with
respect to the obtained POD modes, of the variablez(x, t) in
(1). The initial values are given byαj(0) = 〈z(·, 0), ψj〉 , j =
1, 2, · · · , l.

IV. B ILINEAR QUADRATIC OPTIMAL CONTROL

The finite horizon optimal control problem defined in (3)
can now be rewritten as

min
u,v

J=
1

2
yT(tf )Sy(tf )+

1

2

∫ tf

t0

[
yT(t)Qy(t)+r2uu

2+rvv
2
]
dt,

where Sij =
∫ L
0 S(x)ψi(x)ψj(x)dx and Qij =∫ L

0
Q(x)ψi(x)ψj(x)dx, i, j = 1, . . . , l.

Introducing the Lagrange multiplierp ∈ R
l, we can define

the system HamiltonianH(y, u, v, p) = 1
2 (yTQy + ruu

2 +
rvv

2) + pT (Ay + Fu+Kyv), whereA = K + G. The
minimizing control law is given by





∂H

∂u
= 0 ⇒ u∗(t) = −r−1

u FTp,

∂H

∂v
= 0 ⇒ v∗(t) = −r−1

v (Ky)Tp.

(17)

Thus, using the maximum principle, a canonical optimality
condition can be obtained,






ẏ =
∂H

∂p
= Ay − Fr−1

u FTp −Kyr−1
v (Ky)Tp,

ṗ = −
∂H

∂y
= −Qy −ATp + r−1

v (Ky)TpKTp,

y(t0) = y0, p(tf ) = Sy(tf ).

(18)

which is a nonlinear two-point boundary value problem
(TBVP) and usually impossible to be solved explicitly.

To compute the optimal control for the bilinear system
(14), we propose the following successive scheme based on
the Picard approximation,

ẏ(k+1) = Ay(k+1) −Wp(k+1) −G(k), (19)

ṗ(k+1) = −Qy(k+1) −ATp(k+1) +H(k), (20)

y(k+1)(t0) = y0, p(k+1)(tf ) = Sy(k+1)(tf ), (21)

where the superscript(k) denotes the iteration number and
W = Fr−1

u FT = WT , G(k) = Ky(k)r−1
v

[
Ky(k)

]T
p(k),

H(k) = r−1
v

[
Ky(k)

]T
p(k)KTp(k). To solve the linear two

boundary value problem (19)-(21), it is standard to assume
p(k+1) = Py(k+1) + q(k+1), PT = P and to obtain the
equations

Ṗ = −PA−ATP + PWP −Q, P (tf ) = S,

q̇(k+1) = −(A−WP )T q(k+1) + PG(k) +H(k),

q(k+1)(tf ) = 0,

(22)

where

G(k) = r−1
v Ky(k)

[
Ky(k)

]T [
Py(k) + q(k)

]
,

H(k) = r−1
v

[
Ky(k)

]T [
Py(k) + q(k)

]
KT

[
Py(k) + q(k)

]
.

Then, at each iteration step, the quasi-closed-loop system
becomes

ẏ(k+1) =
(
A−WTP

)
y(k+1) −Wq(k+1) −G(k),

y(k+1)(t0) = y0.
(23)



When the iteration index(k) is large enough, we can achieve
the following feedback laws,

u=−r−1
u FT(Py+q∗) , v=−r−1

v (Ky)T(Py + q∗) , (24)

wherelimk→∞ q(k) = q∗.
Remark 1:The solution of the Riccati matrix equation

(P -equation) actually requires the solution ofl2 coupled
ODEs, wherel denotes the system dimension. The advantage
of this new algorithm resides on the fact that it is not
necessary to compute the Riccati equation in each iteration
step. Only the vector equation for the feed-forward control
term (q-equation) needs to be solved iteratively in each step.
However, the solution of this equation requires the solution
of only l coupled ODEs.

V. CONVERGENCESTUDY

In the rest of this section, it remains to prove the con-
vergence of the iteration scheme in solving the optimal
control problem. Namely, we will show the following limits
in appropriate functional spaces

lim
k→∞

y(k) = y∗, lim
k→∞

q(k) = q∗. (25)

The associated spaces are three Banach spaces
(see, e.g., [15], [18]) B1 = C([t0, tf ],R

l),
B2 = C([t0, tf ],R

l×l), B3 = C([t0, tf ],R
l) with norms

‖y‖B1
= sups∈[t0,tf ] ‖y(s)‖, ‖P‖B2

= sups∈[t0,tf ] ‖P (s)‖

and‖q‖B3
= sups∈[t0,tf ] ‖q(s)‖, where‖y‖ =

√∑l
i=1 y2

i ,

‖P‖ =
√∑l

i,j=1 P
2
ij and‖q‖ =

√∑l
i=1 q

2
i . To show (25),

we only need to show that both
{
y(k)

}
and

{
P (k)

}
are

Cauchy sequences. Thus, the convergence follows due to the
completeness of the Banach spaces. The convergence proof
is based on the contraction mapping theorem for Banach
spaces [19].

Theorem 1:If the control weight factor rv is large
enough, then the iteration scheme is convergent, i.e.,
limk→∞ y(k) = y∗, limk→∞ q(k) = q∗.

Proof: By direct computations, we can obtain

y(k+1) − y(k) (26)

=−

∫ t

t0

e(A−WP )(t−τ)
{
W

[
q(k+1)−q(k)

]
+

[
G(k)−G(k−1)

]}
dτ,

and

q(k+1)−q(k)=−

∫ tf

t

e(A−WP )T (t−τ)P
[
G(k)−G(k−1)

]
dτ

−

∫ tf

t

e(A−WP )T (t−τ)
[
H(k)−H(k−1)

]
dτ. (27)

Then, we compute the norms,

∥∥∥y(k+1)−y(k)
∥∥∥≤

∫ tf

t0

(
γ1

∥∥∥q(k+1)−q(k)
∥∥∥+γ2

∥∥∥G(k)−G(k−1)
∥∥∥
)
dτ,

∥∥∥q(k+1)−q(k)
∥∥∥≤

∫ tf

t0

(
γ3

∥∥∥G(k)−G(k−1)
∥∥∥+γ4

∥∥∥H(k)−H(k−1)
∥∥∥
)
dτ,

where γ1(t) =
∥∥e(A−WP )(t−τ)W

∥∥, γ2(t) =∥∥e(A−WP )(t−τ)
∥∥, γ3(t) =

∥∥∥e(A−WP )T (t−τ)P
∥∥∥ and

γ4(t) =
∥∥∥e(A−WP )T (t−τ)

∥∥∥ = γ2(t).

We rewriteG(k)=r−1
v KY(k)KT

[
Py(k)+q(k)

]
andH(k)=

r−1
v δ

(k)
yy K

T
[
Py(k)+q(k)

]
+r−1

v δ
(k)
yq K

T
[
Py(k) + q(k)

]
, where

Y(k) = y(k)
[
y(k)

]T
, δ(k)yy =

[
y(k)

]T
KTPy(k) and δ(k)yq =[

y(k)
]T
KT q(k). Now we evaluateG(k)−G(k−1) andH(k)−

H(k−1) in terms ofq(k) − q(k−1) andy(k) − y(k−1),
∥∥G(k) −G(k−1)

∥∥
r−1
v

≤
∥∥∥K

[
Y(k) − Y(k−1)

]
KT

[
Py(k) + q(k)

]∥∥∥

+
∥∥∥KY(k−1)KTP

[
y(k+1) − y(k)

]∥∥∥

+
∥∥∥KY(k−1)KT

[
q(k) − q(k−1)

]∥∥∥ , (28)

where Y(k) − Y(k−1) =
[
y(k)−y(k−1)

] [
y(k)

]T
+

y(k−1)
[
y(k)−y(k−1)

]T
. Then, we have

∥∥G(k)−G(k−1)
∥∥

r−1
v

≤γ
(k)
5

∥∥∥y(k)−y(k−1)
∥∥∥+γ(k)

6

∥∥∥q(k)−q(k−1)
∥∥∥ ,

whereγ(k)
5 (t) =

[
‖y(k)‖ + ‖y(k−1)‖

]
‖K‖2

∥∥Py(k) + q(k)
∥∥+

‖K‖2‖P‖
∥∥Y(k−1)

∥∥, γ(k)
6 (t) = ‖K‖2

∥∥Y(k−1)
∥∥.

Similarly, we have
∥∥H(k) −H(k−1)

∥∥
r−1
v

≤
∣∣∣δ(k)yy − δ(k−1)

yy + δ(k)yq − δ(k−1)
yq

∣∣∣ ‖KT ‖
∥∥∥Py(k) + q(k)

∥∥∥

+
[∣∣∣δ(k−1)

yy

∣∣∣ +
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KTP‖

∥∥∥y(k) − y(k−1)
∥∥∥

+
[∣∣∣δ(k−1)

yy

∣∣∣ +
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KT ‖

∥∥∥q(k) − q(k−1)
∥∥∥ . (29)

Noting δ
(k)
yy − δ

(k−1)
yy =

[
y(k) − y(k−1)

]T
KTPy(k) +[

y(k−1)
]T
KTP

[
y(k) − y(k−1)

]
and δ

(k)
yq − δ

(k−1)
yq =[

y(k) − y(k−1)
]T
KT q(k) +

[
y(k−1)

]T
KT

[
q(k) − q(k−1)

]
,

then we can obtain
∥∥H(k)−H(k−1)

∥∥
r−1
v

≤γ
(k)
7

∥∥∥y(k)−y(k−1)
∥∥∥+γ(k)

8

∥∥∥q(k)−q(k−1)
∥∥∥ ,

whereγ(k)
7 (t), γ(k)

8 (t) can be obtained by direct computa-
tions

γ
(k)
7 (t)

= ‖KT ‖
∥∥∥Py(k) + q(k)

∥∥∥ ‖KTP‖
(
‖y(k)‖ + ‖y(k−1)‖

)

+
[∣∣∣δ(k)yy

∣∣∣+
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KTP‖+‖K‖‖Py(k)+q(k)‖‖KT q(k)‖,

(30)

γ
(k)
8 (t)

= ‖KT ‖
∥∥∥Py(k) + q(k)

∥∥∥ ‖KTP‖‖y(k−1)‖

+
[∣∣∣δ(k)yy

∣∣∣ +
∣∣∣δ(k−1)

yq

∣∣∣
]
‖KT‖. (31)



Fig. 1. Closed-loop control system.

Therefore, by takingB-norms both sides, we obtain
[

‖y(k+1) − y(k)‖B1

‖q(k+1) − q(k)‖B3

]
≤
T

rv

[
‖y(k) − y(k−1)‖B1

‖q(k) − q(k−1)‖B3

]
(32)

where the elements of the transform matrixT are given by

T11 = max
τ∈[t0,tf ]

[
γ2(τ)γ

(k)
5 (τ)

]
, (33)

T12 = max
τ∈[t0,tf ]

[
γ1(τ) + γ2(τ)γ

(k)
6 (τ)

]
, (34)

T21 = max
τ∈[t0,tf ]

[
γ3(τ)γ

(k)
5 (τ) + γ4(τ)γ

(k)
7 (τ)

]
, (35)

T22 = max
τ∈[t0,tf ]

[
γ3(τ)γ

(k)
6 (τ) + γ4(τ)γ

(k)
8 (τ)

]
. (36)

Therefore, if all of the eigenvalues ofT , σ(T ) satisfy
r−1
v max |σ(T )| < 1, then we can conclude that the se-

quences{y(k)} and{q(k)} are convergent.
Remark 2: In the proof of Theorem 1, we note that the

transformation matrixT calculated in (33)-(36) depends on
the iteration index(k) and also includes the evolutions ofy
andq. Although it is difficult to compute the eigenvalues of
T explicitly in each iteration step, to ensure convergence of
the iteration scheme we can just make the control weighting
factor rv large enough. It is possible to prove that a large
enough rv also guarantees boundness for the matrixT .
Increasing the value ofrv is also a way to ensure|v| < 1.

VI. SIMULATION STUDY

Closing the control loop with the iteration-based feedback
laws is not as direct as in the finite dimensional case (see,
Fig. 1). After theN -th iteration, we can obtain the feedback
controllers

u(N)=−r−1
u F

T
[
Py+q(N)

]
, v(N)=−r−1

v (Ky)T
[
Py+q(N)

]
,

based on (24), wherey(t) is the finite-dimensional approxi-
mation, with respect to thel POD modes, ofz(x, t). Before
being able to substitute the feedback laws into the original
system (1), with the physical domain defined over(0 ≤ x ≤
L = 1), we need to rewrite the control laws in terms of
z(x, t), or at least in terms of a higher-order approximation
Y(t) of z(x, t).

We use the pseudo-spectral method to simulate the non-
linear PDE system. Assuming that the evolution can be
expanded by a series of harmonic functions,z(x, t) ≈∑e

j=1 βj(t)φj(x), whereφj(x) = sin(jπx), then we can
derive a higher-order finite dimensional system using the
Galerkin projection method

M
dY

dt
= AY + KYv(N) + Fu(N), (37)

where the system state vector is defined byY =
[β1, . . . , βe]

T , with e > l. The system matrices can be ob-
tained by following the same lines of (15)-(16) by replacing
the POD modes with harmonics basis functions. By noting
that

αi =

∫ 1

0

z(x, t)ψi(x)dx =

e∑

j=1

βj

∫ 1

0

φj(x)ψi(x)dx

and introducingC ∈ R
l×e, [C]ij =

∫ 1

0 φj(x)ψi(x)dx, then
we havey = CY. Thus, we can formulate the feedback laws
in terms of the new state vectorY,

u=−r−1
u FT (PCY + q∗) , v=−r−1

v (KCY)T (PCY+q∗) .

Therefore, the closed loop system becomes

M
dY

dt
= AY − r−1

u FFT (PCY + q∗)

− r−1
v KY(KCY)T (PCY + q∗) . (38)

We first simulate the system (1) overt0 = 0 ≤ t ≤ tf = 50
with ζ(x) = 10−3, ξ(x) = sin(πx), λ(x) ≡ 0, ϕ(x) =∑5

k=1 sin(kπx) and u(t) = v(t) = 0 to obtain the POD
modes. The system evolution and the dominant POD modes
are shown in Fig. 2 and Fig. 3, respectively. By using the first
four POD modes (l = 4) we can construct a bilinear system
and the approximation error is shown in Fig. 4. In validating
the iteration algorithm, we chooseru = 1, rv = 15, S =
0.5I andQ = 0.01I. The iteration scheme converges and
the obtained feedback laws can enhance the dissipation of
the system evolution. The simulation of the evolution of the
closed-loop PDE system is shown in Fig. 5 using 12 sine
wave basis functions in the pseudo-spectral approximation.
A comparison of the spatial profiles of the controlled and
uncontrolled cases at the final timetf is shown in Fig. 6.

VII. C ONCLUSIONS

In this paper we study a controlled parabolic system with
two types of actuation: diffusivity and interior controls.By
using the POD technique, we derive a low dimensional
dynamical system which governs the dominant dynamics of
the original parabolic system. The reduced order system is of
a bilinear form. We propose a convergent successive scheme
based on the Picard approximation to compute the solution
of a finite-time sub-optimal control defined for the reduced-
order bilinear system. This new algorithm avoids repeated
numerical computation of the Riccati equation at each iter-
ation step by introducing an iteration scheme for the feed-
forward control component. In terms of the number of ODEs
required to solve the Riccati matrix equation (P -equation)
and the feed-forward vector equation (q-equation), this new
method can decrease the number of ODEs to be computed
at each iteration step froml2 to l. Simulation studies show
the effectiveness of the model reduction technique and the
successive sub-optimal control laws.
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Fig. 2. Uncontrolled dynamics ofz(x, t) in system (1).
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Fig. 5. Closed-loop dynamics ofz(x, t).
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