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Abstract— The interaction between electrically conducting
fluids and magnetic fields in channel flows generates significant
magnetohydrodynamics (MHD) effects, which often result in
the need of higher pressure gradients to drive the fluid and
lower heat transfer rates due to the laminarization of the
flow. Active boundary control, either open-loop or closed-
loop, can be employed to overcome this limitation. Open-loop
controllers are in general more sensitive to uncertaintiesof the
system, which may result in a poorer performance. Extremum
seeking is a powerful tool to tune in real time open-loop
controllers, incorporating certain degree of feedback into the
control scheme. In this work we combine extremum seeking
with a fixed-structure open-loop controller with the ultimate
goal of enhancing mixing in a 2D MHD channel by boundary
actuation. We show that by carefully tuning the extremum
seeking controller the modified open-loop control scheme can be
as effective as previously proposed closed-loop control schemes.

I. I NTRODUCTION

Magnetohydrodynamic problems arise in many areas. One
major application is cooling systems, where electrically
conducting fluids are often used as the heat transfer media.
Although they are highly favorable for heat transfer due to
their excellent thermal properties (high heat conductivity and
high boiling point), they also tend to be strongly affected by
magnetic fields, which are often present in the system. When
an electrically conducting fluid moves in the presence of a
transverse magnetic field, it produces an electrical field due
to charge separation and subsequently an electric current.
The interaction between the induced electric current and the
imposed magnetic field originates a body force, called the
Lorentz force, which acts on the fluid itself. Because this
force acts in the opposite direction of the fluid motion, it is
necessary to increase the pressure gradient on the streamwise
direction to maintain the mean velocity of the flow and
more power is required to pump the liquid through the
channel. In addition, this force tends to suppress turbulence
and laminarize the flow, reducing the heat transfer rate as a
consequence. A good review of the present state of research
in this area can be found in [1].

Active control of fluid systems, implemented through mi-
cro electro-mechanical (MEM) or electro-magnetic actuators
and sensors, can be used to achieve optimally the desired
level of stability (when suppression of turbulence is desired)
or instability (when enhancement of mixing is desired).
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The benefits of managing and controlling unsteady flows in
engineering applications can be significant. This area has
attracted much interest and has dramatically advanced in
recent years [2], [3], [4]. The boundary control of MHD
flows has been considered for decades [5], [6], [7], [8],
[9]. Research subjects range from strongly coupled MHD
problems, like liquid metal and melted salt flows, to weakly
coupled MHD problems, like salt water flows. Early research
mostly focused on passive and open loop control. This
situation is partly due to the complexity of the coupled MHD
equations.

Our prior work includes the development of a feedback
control scheme for mixing enhancement in a 2D MHD
flow [10], [11]. Micro-jets, pressure sensors, and magnetic
field sensors embedded into the walls of the flow domain
were considered in the mentioned work to find a feedback
control law that is optimal with respect to a cost functional
related to a mixing measure. The effectiveness of the pro-
posed controller has been illustrated in [12], where a simple
traveling-wave-like boundary control was also investigated
for comparison. The numerical simulations confirmed that
the closed-loop control scheme is generally more effec-
tive than the simple open-loop controller. However, it was
speculated at that time that fine-tuning of the parameters
of the open-loop control law could result in an improved
performance.

In this work we employ extremum seeking to optimize
in real time the performance of an open-loop controller.
Extremum seeking is a powerful tool to build a real-time
feedback controller based on fixed-structure, open-loop con-
trol law with to-be-tuned parameters. The idea of extremum
seeking originated decades ago. Recently it has become
a popular tool for real-time optimization [13]. It can be
used in many nonlinear engineering problems which have
local minimums or maximums. Applications of extremum
seeking to flow control include [14], [15], [16]. A small
sinusoidal perturbation is added to the parameter that is
being optimized and the corresponding change of the cost
function is processed to decide the optimization direction.
The procedure is fully automatic and several parameters can
be optimized simultaneously.

However, significant difficulty still remains when using
an open-loop scheme to control a complex fluid system.
The main problem is due to the multiscale complexity of
the MHD channel flow. Our simulation results show that
the mixing-related cost function shows highly nonlinear and
sometimes nearly discontinuous behavior. This poses serious
challenges for extremum seeking, which is essentially a
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Fig. 1. 2D MHD flow between plates

gradient-based search scheme. Previous work has confirmed
that under this circumstances the optimization problem may
not be well-posed [17]. On the other hand, our cost function
does show a clear trend of being maximized at a certain
region. Measures are taken to overcome this difficulty, so
that the overall trend of the cost function can be captured
regardless of occasional discontinuities.

This article is organized as follows. In Section II, we state
the full equation system for incompressible MHD flows, and
derive the equations required for numerical simulations. In
Section III, the control scheme is presented, including a brief
introduction to extremum seeking. In Section IV, simulation
results are given for different control schemes in a typical
magnetohydrodynamic physical setting. Section V closes the
paper stating the conclusion and the identified future work.

II. PROBLEM STATEMENT

We consider a 2D, incompressible, electrically conducting
fluid flowing between two parallel plates (0< x < d = 4π ,
and −1 < y < 1) along thex-direction, as illustrated in
Fig. 1, where an external magnetic fieldB0 is imposed
perpendicularly to the plates, i.e., in they-direction. This
flow was first investigated experimentally and theoretically
by Hartmann [18]. The mass fluxQ is fixed. A uniform
pressure gradientPx in the x-direction is required to balance
the boundary drag force and the body force due to the MHD
effects. Space variablesx andy, time t, velocity v, magnetic
induction B, and current densityj are converted to their
dimensionless forms:x= x∗

L , y= y∗

L , t = t∗U0
L , B = B∗

B0
, v = v∗

U0
,

j = j∗

U0B0
, where L, U0 and B0 are dimensional reference

length, velocity and magnetic field. Variables denoted by
the star notation are dimensional quantities. The vector
variables are defined asv(x,y, t)=U(x,y, t)x̂+V(x,y,t)ŷ and
B(x,y,t)=Bu(x,y, t)x̂ + Bv(x,y, t)ŷ, where x̂ and ŷ are unit
vectors onx andy directions. The dimensionless governing
equations for the MHD channel flow are given by

∂v
∂ t

=
1

Re
∇2v−∇P− (v ·∇)v−N(j ×B) , (1)

∂B
∂ t

=
1

Rem
∇2B+ ∇× (u×B), (2)

j =
1

Rem
∇×B, (3)

∇ ·v = 0, (4)

∇ ·B = 0. (5)

The characteristic numbers, including Reynolds number,
magnetic Reynolds number, Alfvén number and Stuart num-

ber are defined as: Re= U0L
ν , Rem = µσU0L and N=

σB2
0L

ρU0
.

The Hartmann number, Ha= BoL
√

σ
ρν , is used to indicate

the interaction level between the magnetic field and the
velocity field. The physical properties of the fluid, including
the mass densityρ , the dynamic viscosityν, the eletrical
conductivity σ and the magnetic permeabilityµ , are all
assumed constant.

The bottom and top walls are assumed non-slip, perfectly
electrically insulating boundaries. Hence, the boundary con-
ditions for the uncontrolled MHD system are given by

U(x,±1,t) = 0, V(x,±1,t) = Vctrl ,

Bu(x,±1,t) = 0,
∂Bv

∂y

∣

∣

∣

∣

y=±1
= 0,

whereVctrl is determined by the proposed boundary control
laws. In the uncontrolled cases,Vctrl = 0.

In this paper, we consider MHD flows at low magnetic
Reynolds numbers, which are also called simplified MHD
(SMHD) flows. In these flows the induced magnetic field is
neglible in comparison with the imposed magnetic field. The
2D SMHD channel flow is described by slightly modified
incompressible N-S equations [19]:

∂v
∂ t

=
1

Re
∇2v− (v ·∇)v+ ∇P+N(Ū −U) x̂, (6)

∇ ·v = 0, (7)

whereŪ represents the average speed, defined asŪ = Q/L.
The validity of this simplified MHD model has been

verified by many pieces of work [20]. The advantage of using
SMHD instead of full MHD is significant, because instead
of solving a coupled PDE of the two time-evolving fields
(v andB) with very different time scales, we can solve only
one time-evolving field. In most engineering applications,the
conditions Re≫1 and Rem≪1 hold. Numerical simulations
also confirm that under such physical settings, full MHD and
SMHD give nearly identical results, while the former method
has to use much smaller time steps (characterized by CFL≪1
[21]) than the latter method to ensure convergence [22].

III. E XTREMUM SEEKING FEEDBACK CONTROL

The design of the boundary control by extremum seeking
starts with a given open-loop control law with undetermined
parameters, which are then optimized by the extremum
seeking in real time. Although the open-loop control law
does not include any information obtained from the system
output, the combined control scheme can still drive the
system to an optimal state, at least near a local maximum.

The control law, implemented through an array of MEM
micro-jets, is given by a traveling wave as the boundary
condition:

V(x,±1,t) = Vctrl = Asin(kx+ θ t), (8)

where constantA is the maximum amplitude,k is the wave
number, andθ is the phase speed. The effectiveness of this
open-loop control law heavily depends onk and θ . The
period of the control “wave” in space isλ = 2π/k, and then
the total number of periods isNc = L/λ . In our simulations,
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Fig. 2. Extremum seeking control scheme

L = 4π , which impliesNc = 2k. For the traveling-wave to
actuate the traveling vortexes,Nc and θ must be set to
some specific combination which can excite a corresponding
unstable mode of the MHD flow. In a fully developed flow,
the unstable mode with most energy is characterized by large
vortexes in a constant number traveling in a roughly constant
speed downstream. Assume that the average phase speed
of the vortexes isVe and the number of vortexes on one
side is Ne, which is half of the total number of vortexes
since they appear in pairs on two sides. Ideally, an open-
loop controller exciting the unstable mode with most energy
will fulfill the condition: Nc = Ne and θ = Ve. In fact, the
choices of wave numberk are limited to a small number of
integers corresponding to the dominant Fourier modes. In this
work, we usek = 1 because it produces the same number of
major vortices as most fully developed flows do (see Fig. 6
for a typical flow pattern). However, without appropriate
sensors and real-time spectrum analysis, the actual value of
Ve can not be determined precisely, rendering the open-loop
controller always out of synchronization with the traveling
vortexes.

It is natural for us to seek a scheme that can automatically
adjust these parameters in order to drive the system to an
optimal or suboptimal state. Optimization methods based
on physical models are mostly useless in our problem,
because it is very difficult to build a model that is able to
represent the relation between the simple control action and
the complex fluid system. Hence, model-less schemes have
to be considered. Extremum seeking is a model-less real-time
optimization scheme which is effective for a wide range of
linear and nonlinear optimization problems, making itselfan
ideal candidate for our problem.

Fig. 2 illustrate the extremum seeking scheme as a block
diagram. In our problem, extremum seeking is used for
iterative optimization of the phase speedθ in order to match
the phase speed of the boundary control with the phase speed
of the major vortices in the flow, so that the mixing effect
can be maximized. We use the enstrophy, a good indicator
of turbulence inside the flow,

Es(v) =
1
2d

∫ 1

−1

∫ d

0

1
2

(

∂v
∂x

−
∂u
∂y

)2

dxdy, (9)

to measure the level of mixing effect. At the beginning of
each extremum seeking iteration, a phase speedθ (k), super-
posed by an intentional sinusoidal perturbation (modulation),
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Fig. 3. Enstrophy as a function of phase speed

(a) θ =0.623157

(b) θ =0.623233

Fig. 4. Streamlines and pressure maps for two cases with verysimilar θ

is fed into the flow system. The simulation of flow system
runs with the new phase speed until its cost function reaches
a statistically steady state. We take samples of the enstrophy
every 20 simulation steps and calculate the standard deviation
of the last 200 samples. A flow is considered statistically
steady if this standard deviation decreases to a specific level.
The system outputJ(θ (k)) is then given by the enstrophy,
averaged over the same period of time during which the
standard deviation is computed. The system output is filtered
by a high-pass filter and multiplied by another sinusoidal
signal (demodulation). The resulting signal is filtered through
a low-pass filter, which becomes the new phase speed for the
next iteration. More details on the theory behind this scheme
can be found in [13].

For a continuous function of a single variable, with
well-defined maximum points, extremum seeking is very
effective. Given the right parameters and enough iterations,
the scheme can almost guarantee convergence, at least to a
local maximum. However, if the cost function is not very
smooth or even discontinuous, then the extremum seeking
algorithm may not capture the slope information and fails.
Such problems do arise in our work, as the cost function has
many sudden changes near the optimal point. The complexity
of the cost function can be seen in Fig. 3. The simulations
are done with the following parameters: Re=6000, B0=0.3
and N=0.002. While the cost function shows a clear trend of
being maximized around 0.75, it seems extremely sensitive
to the phase speed. This behavior is largely caused by the
nonlinearity of the flow. To achieve higher enstrophy, the
boundary control has to produce large sustained vortices in
the flow. Due to its nonlinearity nature, the development of
vortices is seriously affected by the initial conditions and
random numerical noise. It may take extensive long time for
the flow to reach the statistically steady state. Furthermore,



Fig. 5. Initial velocity field (Re= 7500)

a flow with specific physical settings may have more than
one statistically steady state and may not converge to the one
with the highest enstrophy. Take two data points in Fig. 3
for example, the steady state enstrophy drops by 72% from
2.92×107 to 8.13×106 while the phase speed increases by
0.012% from 0.623157 to 0.623233. The pressure maps and
stream lines in Fig. 4 indicate that the vortex patterns in the
two cases are completely different. While the case with much
higher enstrophy have four sustained organized vortices, the
case with much smaller enstrophy has three smaller deformed
vortices on each side. Since the boundary control has two
periods on the streamwise direction, the pattern of three
vortices does not match the period of the boundary control,
which means the boundary control is out of synchronization
and contributes very little to the increase of turbulence.

The mechanism of this irregular behavior of the cost
function is not clearly understood and it will not be discussed
in detail in this work. However, a special technique has to
be implemented within the extremum seeking algorithm to
eliminate the undesirable effect of the discontinuity. This
technique is based on the assumption that in the sense of
overall trend the cost function does not change significantly.
First, we reduce the perturbation signalacos(ωk) in the re-
gion with significant discontinuity, such that the cost function
be expected to change slightly at every extremum seeking
iteration. A simple low-pass filter is then added immediately
after the plant output. This filter provides the average of the
most recent 5 plant outputsJ(θ (k)) (including the latest plant
output). This average can eliminate most of the discontinuity
while capturing the overall trend, thus increasing the ability
of the extremum seeking to stay inside the optimal region.

IV. SIMULATION RESULTS

The numerical simulations are carried out by a modified
Navier-Stokes solver. The equations are discretized using
FFT on the streamwise direction and finite differences on the
spanwise direction, which is also called the pseudospectral
method. Time integration is done using a fractional step
method along with a hybrid Runge-Kutta/Crank-Nicolson
scheme. Linear terms are treated implicitly by the Crank-
Nicolson method and nonlinear terms are treated explicitly
by the Runge-Kutta method. The divergence-free condition
is fulfilled by the fractional step method.

All the simulations are carried out for the same flow
domain:−1<y<1, 0<x<4π . The same mesh is used in
all the simulations presented in this section (grid points in
the x direction: NX= 150, grid points in they direction:
NY = 128).

A. MHD flows with no control

When B0=0 (Ha=0), the momentum equation (1) re-
duces to the well-known Navier-Stokes equation. The two-
dimensional channel flow, which is also known as the

Fig. 6. Pressure maps and streamlines for Re= 7500 (t =266, 1590, 2973)

Fig. 7. Pressure maps and streamlines for Re=7500, Ha=1.83 (t=144,
945, 1126 after the magnetic field is imposed)

Poiseuille flow, is frequently cited as a paradigm for transi-
tion to turbulence, and has drawn extensive attention through
the history of fluid dynamics. This is a classical flow control
problem that has been studied in [4] and the references
therein assuming the availability of an array of pressure
sensors on the walls and an array of MEM micro-jet actuators
(also distributed along the walls) capable of blowing/suction.
Incompressible conventional flows in 2D channels can be
linearly stable for low Reynolds numbers, as infinitesimal
perturbations in the flow field are damped out. The flows
turn linearly unstable for high Reynolds numbers (Re>5772)
[23], [24]. Such flows usually reach statistically steady states,
which we call fully established flows. Fig. 5 and Fig. 6
show how a channel flow (Re=7500) develops to a fully
established flow. The initial parabolic equilibrium velocity
profile, which is linearly unstable, is shown in Fig. 5. The
pressure maps and streamlines, given by Fig. 6, illustrate
how the vortices evolve in time until reaching a fully
established flow when the initial equilibrium velocity profile
is infinitesimally perturbed att =0.

When B0 6=0 (Ha6=0), Fig. 7 shows the effect of the
imposed transverse magnetic field on the stability properties
of the flow. Vorticity maps obtained through direct numerical
simulation studies show the stabilizing effect of the imposed
magnetic field on the 2D Hartmann flow. The simulation
is started att =0 with the fully established flow achieved
in Fig. 6. The enstrophy is commonly used to quantify the
overall turbulence of the velocity field. In our work we use
the averaged enstrophy, defined by (9). The enstrophy of
the simulation case shown in Fig. 7, whose curve can be
found in Fig. 8 labeled “Ha=1.83 ”, decreases as the flow
is stabilized by the imposed magnetic field. Also, stronger
imposed magnetic fields tend to make the flow more stable,
as shown in the same figure.
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Fig. 8. Enstrophy as function of time for different imposed magnetic fields

B. MHD flows with extremum seeking feedback control

In this section, the boundary control based on extremum
seeking is tested. The simulations all start with equilib-
rium solutions achieved after an external magnetic field is
imposed. These flows remain linearly stable indefinitely if
no boundary control is present. The boundary control is
expected to drive these flows to states with higher enstrophy
levels, thus enhancing mixing. Simulations are conducted for
these parameters:

• Case 1: Re=6000,Q=1.5, Ha=1.04.
• Case 2: Re=7500,Q=1.5, Ha=1.83

The initial phase speed is set to 0.35 for both simulation
cases. The other parameters are set asA=0.05, k=4. The
parameters for extremum seeking have to be carefully chosen
to balance the stability and performance of the optimization
process. In this case, we usea=0.004 for θ <0.5 and
a=0.002 for 0.5<θ <0.9. Other parameters are set asb=1,
ω =3, γ =10−9 andh=0.8.

As we can see in Fig. 9 and Fig. 10, the boundary control
based on extremum seeking gradually modifies the phase
speed to try to maximize the cost function. Even though the
control can not stay at the optimal phase speed all the time,
it manages to stabilize the phase speed near the maximum
region, regardless significant amount of randomness in the
cost function.

Results of simulations with the same physical parameters,
but using a feedback control law, are also given for compar-
ison. The feedback boundary control actuation proposed in
[10], [11] is determined by both the pressure field and the
magnetic field:

Vctrl = −kp∆p−kb∆Bv2, (10)

wherekp andkb are constants used to represent the control
gains, and

∆p = p(x,1, t)− p(x,−1, t),

∆Bv2 = (Bv(x,1, t))2
− (Bv(x,−1, t))2 .

Note that the simulations under this control requires a full
MHD solver, which was developed as part of our previous
work [12]. Since the feedback control law (10) does not
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Fig. 9. Phase speed development for extremum seeking feedback control
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Fig. 10. Enstrophy development for extremum seeking feedback control

involve any real-time optimization process, it provides the
full control effort much more quickly than the extremum-
seeking-based controller. However, as we will see from the
simulation results, the extremum-seeking-based controller
can maintain a higher enstrophy level. The gains of the
feedback control are set askp=0.1, kb=10000. Since the
two control laws are very different in nature, it is hard
to compare them side-by-side. Instead, we compare the
enstrophy level for similar control efforts, defined as

C(v) =
1
d

∫ d

0
V(x,−1,t)2 +V(x,1,t)2dx. (11)

As illustrated in Fig.11 and Fig.12, the average control
effort and resulting enstrophy of the flow with Re=6000,
controlled by the boundary control law (10), is 0.11 and
2.5× 106, which gives a enstrophy-control ratioJ/C of
around 2.2× 107. The extremum-seeking-based controller
has a constant control effort, regardless of the phase speed.
In the case shown in Fig. 9 and Fig. 10, the control effort
is 0.217, while the average enstrophy is 2.6× 107. This
gives a much higherJ/C ratio of around 1.2×108, 5 times
higher than the one given by control law (10). A further
investigation reveals that the flow controlled by (10) does not
have sustained large vortices like Fig. 4(a). Instead, its flow
pattern is more similar to Fig. 4(b), resulting in a relatively
low enstrophy level.
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Similar results can be found in the case with Re=7500.
As shown in Fig.9 and 10, the phase speed under the
regulation of extremum seeking is successfully optimized
around 0.55. A flow with the same physical parameters and a
control by control law (10) uses similar control effort (around
0.1) but much lower enstrophy level (around 2.5×106), as
shown in Fig. 11 and Fig. 12. Hence, with Re=7500, the
enstrophy-control ratioJ/C given by two control schemes is
also differed significantly: 1.4×108 in case with extremum
seeking scheme and 2.5× 107 in the case with feedback
control law (10).

V. CONCLUSION

In this work, we developed a boundary controller for mix-
ing enhancement in a 2D MHD channel flow. The controller
is based on a modified open-loop boundary controller whose
parameters are regulated by extremum seeking. The simu-
lation results show that the controller successfully increases
the enstrophy level of the otherwise linearly stable flow, thus
increasing mixing effects inside the flow. The tuning of the
extremum seeking scheme is crucial for the success of the
controller. Because of the complexity of the MHD chan-
nel flow, significant discontinuities exist in the relationship
between the to-be-maximized cost function and the to-be-
optimized parameters. A simple but effective method based
on averaging is used to avoid disruptions caused by cost
function discontinuities during the extremum-seeking opti-
mization process. Results show that the extremum-seeking-
based controller could be as effective in maintaining high
mixing levels as a previously proposed feedback control
scheme.

In our future research, the extremum-seeking-based con-
trol scheme will be extended to 3D MHD flows. It may be
also necessary to develop alternative methods to deal with
the discontinuity of the cost function, especially when the
number of parameters being optimized is more than one.
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[10] E. Schuster and M. Krstić, “Inverse optimal boundary control of
mixing in magnetohydrodynamic channel flows,”Proceedings of the
42nd IEEE Conference on Decision and Control, 2003.

[11] E. Schuster, L. Luo, and M. Krstic, “Mhd channel flow control in
2d: Mixing enhancement by boundary feedback,”Automatica, vol. 44,
no. 10, pp. 2498 – 2507, 2008.

[12] L. Luo and E. Schuster, “Heat transfer enhancement in 2Dmagnetohy-
drodynamic channel flow by boundary feedback control,”45th IEEE
Conference on Decision and Control, p. 5317, San Diego, 2006.
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