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Abstract—In a magnetic fusion reactor, the achievement of
a certain type of plasma current profiles, which are compatible z
with magnetohydrodynamic (MHD) stability at high plasma
pressure, is key to enable high fusion gain and noninductive
sustainment of the plasma current for steady-state operation. Tf %7 P
The approach taken toward establishing such plasma current T T
profiles at the DIII-D tokamak is to create the desired profile = P r
during the plasma current ramp-up and early flattop phases.
The evolution in time of the current profile is related to the
evolution of the poloidal flux, which is modeled in normalized
cylindrical coordinates using a partial differential equation
(PDE) usually referred to as the magnetic diffusion equation.
The control problem is formulated as an open-loop, finite-
time, optimal control problem for a nonlinear distributed Fig. 1. Poloidal flux in a tokamak.
parameter system, and is approached using extremum seeking.

Simulation results, which demonstrate the accuracy of the h ; o
; o ydrogen atoms which have been ionized. The tokamak [2]
considered model and the efficiency of the proposed controller, concept invented in the Soviet Union in the late 1950's is

are presented. . g . .
now the major and most promising magnetic confinement
. INTRODUCTION approach being pursued around the world. Tokamak is an
. . . L acronym developed from the Russian words TOroidalnaya
In a fu5|0|j reaction, two light nuclei stick together tQKAmera ee MAgnitnaya Katushka which means “toroidal
form a heavier nucleus. The total mass after the reactiqh,mper with magnetic coils”. The tokamak uses field lines
is less than that before. The “lost” mass appears as energ¥,« into a torus so that there is no end. In a tokamak,

with the amount given t_)y the famous Elnsteln formulgyg (oroidal magnetic field is produced by the so-called
E = (Mr — Mp)c?, whereE is the energyM is the mass of o oidal field” (TF) coils. Addition of a poloidal field
the reactant nucleMp, is the mass of the product nuclei, andgenerated by the toroidal plasma current and the “poloidal
¢ is the speed of light. Since nuclei carry positive chargege|q» (pF) coils, which is necessary for the existence of a
they. normally 'rep'el one another. To overcome the Cou'°"ﬁagnetohydrodynamic (MHD) equilibrium [3], produces a
barn_er, the kln_etlc energy of the nuclei is increased b}fombined field in which the magnetic field lines twist their
heating. _The higher the temperature, the faster the ato%y around the tokamak to form a helical structure. A more
or nuclei movg._The fuel must be_ heated to te.mperatur%?_depth introduction to fusion can be found in [4], [5],
around 100 million .degrees at wh.|<.:h the nuclei overcom&s]' in which considerable effort was made to describe the
the force of repulsion of the positive charges when they, ent problems of tokamak plasma control at a level that

collide, and fuse. At much lower temperatur_es (about 1R accessible to engineers, mathematicians, and non-plasma
thousand degrees), the electrons and nuclei separate sicists

create an ionized gas called plasma. In a plasma, the electron is possible to use the poloidal component of the he-

are stripped from the nuclei of the atoms resulting in Acoidal magnetic lines to define nested toroidal surfaces

ionizeq gas where positively and negatively_ charged partiCIet%rresponding to constant values of the poloidal magnetic
move independently. Importantly, the particles in a plas x. As it is illustrated in Fig. 1, the poloidal flug at a

?;T dChargegétf:cogg::;:E:;T‘;'ty_::dl'r(‘:er?;f{ th mringtt oint P in the (r,z) cross section of the plasma (i.e., poloidal
elas. Viagnet ' usion [1] exploits this prop ross section) is the total flux through the surf&dgsounded

of the plasma and uses magnetic fields to exert a force on tﬁg the toroidal ring passing through i.e.,  — ifB dS.
€. ¥ =2n) Ppo
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Lo ‘ ‘ ‘ input parameters that achieve the extremum. In this work,

147 PHASE | PHASENl ] we use extremum seeking to obtain the evolutions of the

13l : ! control inputs in the time intervgl0, T] that minimize the

1 = | | quadratic error between the actual current profile at time
T, T T, T € [T1,T] and a desired target profile. This work is aimed

1.1f b

at saving long trial-and-error periods of time currently spent
by fusion experimentalists trying to manually adjust the time
evolutions of the actuators to achieve the desired current
profile at sometimeTl € [T1,T,] during the early stage of
the flattop phase. Simulation results show the effectiveness
of this approach.

[y

|_RAMP-UR/PHASE |, FLAT-TOP PHASE
I T

Current I(t) [MA]

: This paper is organized as follows. In Section II, a dy-
[— current | . ; o .
05 ‘ ‘ — namic model for the poloidal flug is introduced. Section Il
500 1000 1500 2000 2500 describes the control objectives during the different phases

Time [msec]

Fig. 2. Current Evolution. of the discharge. An open-loop control approach based on

extremum seeking is introduced in Section IV. A simulation
by the increase of the energy confinement time and plasmsaudy showing the response of the proposed dynamic model
pressure. In such conditions a dominant fraction of thand the effectiveness of the extremum seeking optimal con-
plasma current is self-generated and the requirement @l method is presented in Section V. Finally, conclusions
externally driven non-inductive current (a method of drivingand identified future work are presented in Section VI.
plasma current in a tokamak that does not depend on trans-
former action (e.g., by using RF waves or neutral beams); II. CURRENT PROFILE EVOLUTION MODEL

necessary for a continuously operated power plant, since . , ) . ,
the inductive current based on transformer action is cyclic) Ve |etp be an arbitrary coordinate indexing the magnetic

for steady-state operation is reduced. Setting up a suitaidfface ¢ = constant). Any quantity constant on each mag-

current profile, characterized by a weakly reversed magneffgtic surface could be chosen as the varighléVe choose

shear [7], has been demonstrated to be a key condition € Meéan geometric Zradius of the magnetic surface as the
i.e., MByop~ = @, where® is the toroidal mag-

one possible advanced scenario with improved confinemefgablep. , : ' )
and possible steady-state operation [8]. netic flux. The evolution of the poloidal flux in normalized

Although this research area is in its infancy, recent experfylindrical coordinates is given by the magnetic diffusion
ments at different devices around the world (JET, DIII-D, JTéavation [12],

60U, Tore Supra) have demonstrated significant progress i T 0 /[annd R <ini -B>
achieving profile control. At JET (UK), different current and t:n(ZE)Z“af) (PFGH ag)—RoHn(Te)Jg", (1)
temperature equilibrium target profiles have been reachedﬁ HoPF"P ¢o

and sustained for several seconds during the flattop curreghere all the parameters are defined in Table I.

phase [9], [10]. In contrast to the JET approach, experiments The model (1) is based on the following assumptions:
at DIII-D (US) focus on creating the desired current profile
during the plasma current ramp-up and early flattop phases
with the aim of maintaining this target profile during the

« The vacuum toroidal field is constant in time (usually
true in practice).

subsequent phases of the discharge. Since the actuators that TABLE |
are used to achieve the desired target profile are constrained A DESCRIPTION OF THE PARAMETERS
by physical limitations, experiments have shown that some parameters Description
of the desirable target profiles may not be achieved for al[ ¢ poloidal flux
arbitrary initial condition. Therefore, a perfect matching of | 7(Te) plasma resistivity

. . . . Te electron temperature
the desirable target profile may not be physically possible| p plasma density
In practice, the objective is to achieve the best possible p,=4mx10"7 (2) || vacuum magnetic permeability

i ing i i i i Pp=0.79(m) radius of last closed flux surface
1ppr0XIIm?re matcnmg n fa Shhort t|rr|1e I\NlndOW§, TZ] durmlg Dy toroidal flux in the last closed flux surface
the early qttop phase of the total p asma current pulse, asg, — 1857 reference magnetic field &
shown in Fig. 2. Thus, such a matching problem can be R,=1.668(m) reference point foBy
treated as an optimal control problem for a nonlinear PDE _ (9., geometric center of plasrgeo)
svstem p normalized radlusffib
y ’ . . . . F,.GH geometric factors (functions ¢ (Fig. 3))

EXtrem}Jm s_eeklng .[11] is employed in this Wo_rk o | ju any non-inductive source of current density
tackle a finite-time optimal control problem for a nonlinear, (neutral beam, electron cyclotron, etc.)
distributed-parameter system. Extremum seeking is appli- <> flux-surface average
. N plasma current density

cable_ to sy_stems where the input-to-output map, p(_)53|_bl,| total plasma current
non-linear, is unknown but has an extremum. The objective R total power of non-inductive current drives
of the extremum seeking algorithm is to find the set ofln spatially average density




5 35
N -
45} G | E
-~ H|] mz 3f
af ] 5]
Q o
350 £ E25f
az
3 s
T g 7
O 25+ o
w 5
ol E?._w 1.5-
R &
s E gl
“““““““““““““““““““““““ HO |
e = s
"""" 2 05 o
0.5t ] SIs
= R T
0 L L L L 0 L L L L T ===
0 0.2 0.4 06 0.8 1 0 0.2 0.4 06 0.8 1
olp, plp,
Fig. 3. Geometric factors, G, andH. Fig. 4. Density (P°f'®), temperatureTP°"'®), and non-inductive toroidal

current density mﬁ%gr'e(f))) profiles.

« The map ofp in real space is constant in time (approx-(Electron Cyclotron Heating (ECH), Neutral Beam Heating
imately true if plasma boundary control regulates to @NBH), etc.). _
constant reference). The non-inductive toroidal current dens@lg‘;'% is writ-

The boundary conditions of (1) are given by ten as
ay _ <T\]|'B_> .profile, a |tl/ZR t)5/4
Bloo = O ) IR g O g ©
% = B0, @ o
Plp=1 RCPELI P Wherej,ﬂﬁgr'e is given in Fig. 4, and par = 1.2139- 1018,
wherel (t) denotes the total plasma current. The resistivityn scales with the temperatuiig as

The current density that flows toroidally around the toka- R Kef f Zof f
mak, < j-B/Bgo >, and whose profile must be controlled, t)= 32 A
is related to spatial derivative of the poloidal magnetic flux, Te™(p.1)
<j B> 1 P ( where Zes ¢ :d1.5, andkef f :d4.2702- 1h(T8.h |

= o A AR We considem(t), I(t), an t) the sical actuators
yongsz %P of the system. 01 a) i

During “Phase I” (see Fig. 2), mainly governed by the
ramp-up phase, the plasma current is mostly driven by  Ill. CONTROL PROBLEM DESCRIPTION
induction. In this case, it is possible to decouple the equation The control objective, as well as the dynamic models
for the evolution of the poloidal flux from the evolution equa-gr current profile evolution, depend on the phases of the
tions for the temperatur@(p,t) and the densityne(D,t).  discharge (Fig. 2). During “Phase I” the control goal is to
Highly simplified models for the density, temperature, andrive the current profile from any arbitrary initial condition
non-inductive toroidal current density are chosen for thigy g prescribed target profile at some tiffie (T1, T,) (here
phase. The profile shapes are assumed to remain fixed. Fhe— 1 2s and T, = 2.4s) in the flat-top phase of the total
responses to the actuators are simply scalar multiples of tggrrenti (t) evolution. However, since the available actuators
reference profiles. These reference profiles are taken fronygring “Phase I” differ from those used during “Phase II”
DIII-D tokamak discharge. and are constrained by physical limitations, the prescribed

The densityn is independently controlled, and can betarget profile is not an equilibrium profile during “Phase I”.
written as A e A During “Phase 11" the control goal is to regulate the current

n(p,t) = nPe(p)un(t), (4)

profile using as little control effort as possible because the
where nPofile is given in Fig. 4. The average density isactuators are not only limited in power but also in energy. For
defined am(f) = fy n(p,t)dp.

this reason, the goal during “Phase 1" is to set up an initial
The temperaturds is proportional to'(t%‘({)ﬁ, and can be profile for “Phase II” as close as possible to its desirable
written as

@)

Bo.o

profile.

In this paper, we focus on “Phase I.” An optimal control
problem must be solved, where control lal), Rq (t), and
n(t) are sought to minimize the cost functional

J= %min(\]*(tj)), (8)

To(p.t) = kreTrerie(p) LV ©)

n(t)
where TP°M'® is given in Fig. 4,kre = 1.7295. 10, and
Rq is the total power of the non-inductive current sources



wheret; are discrete points in time equally spaced withir . . Plant
the interval [T, To], e.g.,t(j) = 1.25,1.3s,1.4s,...,2.4s for 61 Jl
j=1,23,...,13, andJ*(t;j) is given b
j (tj)isg y 0 (k) 1576) JO ()
* W A des/ A \\2
1= A
whereM is the number of discrete points in space within the dﬁe (k) T . é(k) OXJ‘f(k) q-1 .
interval [0, 1] for the normalized radius. 1 g-1 1 g+h

For convenience, since experllmentallsts usually descrit acos(cok) Low-Pass bcos(mk—¢) High-Pass
the target profile in terms of the inverse of the safety factc Filter Filter
g, defined here as, the cost function (8) has been expressea Fig. 5. Extremum seeking control scheme.
in terms of this variable. The safety factqrand the figure

of merit 1 are related and defined as We seeM (t), N(t) andRq(t) for t € [0, T] that makes (P, T)

as close as possible to the prescribed target protfiép)

1 ay(p.t) :
1(p,t) = =21 , (10) at some timeT € [Ty, To].
(p.) d(p,t) o®
The constant relationship between and p, p = HB%M’ IV. EXTREMUM SEEKING OPTIMAL CONTROL
and the definition of the normalized radius (in Table 1) allow EXxtremum seeking control, a popular tool in control appli-
us to rewrite (10) as cations in the 1940-50’s, has seen a resurgence in popularity

as a real time optimization tool in different fields of engi-

1(p,t) = %%, (11) neering [11]. Extremum seeking is applicable in situations
9p Bpop;p where there is a nonlinearity in the control problem, and
whereBy,, and p, are defined in Table I. the nonlinearity has a local minimum or a maximum. The

“Phase I” can be roughly divided into two phases, th@arameter space can be multidimensional. Here, we use
ramp-up phase and the flattop phase. During the ramp-@gtremum seeking for iterative optimization of the structure
phase, the three actuatdr$), n(t) andR(t) are available, parameterd) (shown in Fig. 5) to make the quadratic error
whereas during the flattop phase we can only vBg/(t) betweeni(p,T) and the prescribed target profilés(p) as
keepingl (t) andn(t) fixed at some predetermined values. Insmall as possible at some tirffec [Ty, T2, i.e., to minimize
addition to this specific constraints during the flattop phasé,in (8).
the absolute values, and sometimes the derivatives in time,We change the structure paramet@rafter each simulated
of the control variables must be within some specific limitplasma “discharge.” Thus, we employ the discrete time
during the whole “Phase I”. The physical ranges fér), Vvariant of extremum seeking [13]. The implementation is

n(t) and Rg(t) are given by depicted in Figure 5, wherg denotes the variable of th&
di(t) transform. The high-pass filter is designed as0< 1, and
0 < 1(t) < Imaxs " < dlax (12) the modulation frequencw is selected such thab = arr,

dt O0< |a| <1, anda is rational. The static nonlinear block

n(t) J(0) corresponds to one “discharge” of the system. The

I(MA) < 101 <5I(MA) (13) objective is to minimizel. If J has a global minimum, its

value is denoted by* and its argument by*. Given the
0 < Rot(t) < Fmax- (14)

simulated profiler (p,t), the output of the nonlinear static

To accurately reproduce experimental discharges, we mu8eP, J(k) = J(6(k)), is obtained by evaluating (8) and used
add constraints forl(t) and n{t) at the initial time of to compute8(k+ 1) according to the extremum seeking

“Phase I, i.e., procedure in the Figure 5, or written equivalently as
[(t=0s)=1p, n({t=0s)=np. (15) Ji (k) —hdf(k—1)+J(k) —J(k—1) (17)
In addition, a value of the total currehtt) is prescribed &) = Jr(kibcogwk—9) (18)
for the flattop phase, i.e., 0k+1) = ?(k) —yé&(k) (29)
1t > T0) = hargas (16) 6(k+1) = 6O(k+1)+acojJwk+1)). (20)

whereT; marks the end of the ramp-up phase and the start We are dealing with a multi-parameter extremum seeking
of the flattop phase (Fig. 2). procedure (10 parameters). Thus, we write

In summary, the optimal control problem (8) must be 61(K) él(k) £1(K)
solved taking into account that (i) during the ramp-up phase 6,(K) éz(k) &(K)
(0<t <T;)we can manipulate the three actuators by obeying(k) - : , é(k) - : E(K) =

the physical constraints (12)—(15), (ii) during flattop phase : : :
I(t) is constrained by (16), ana{t) must be equal to(Ty). 610(k) 610(k) &10(K)
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Fig. 6. Profile evolutions in a simulated “discharge”: @%;%, (b) q;“‘("%'?, () y.
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Fig. 7. Simulation of extremum seeking optimal control: (a) Curiéht evolution ,(b) initial ¢ profile extracted from experimental shot 119566, (c)
Desired target profile and computed best matching (@) (€) Rat, (f) n(t).

The extremum seeking constants shown in Figure 5 athe time evolution of the three physical actuatbffs, n(t)

written as andRq (t). The vector paramete? has 10 components,
a = b = gi_ag([al ap -+ au)) 6 = [I(0.4s),1(0.85),Ret(0S),Ret (0.45), Rt (0.8),
y = diag(y v - i) .29 710 20 210,60, M099 A1129] (21)
In addition, we denote I . e I o
cos k) cosank—gn) y taking into accoun atl (0s) = lg and 1(Ty) =

cogwyK) cogwk — @) ltarget, @nd using polynomial curve fitting for the poir_lts
cog wk) = . , cog wk— @) = . 1(0s),1(0.4s),1(0.8s),1(1.2s), we can reconstruct the profile
: : for I(t) for t € [0, T1]. In addition, we make (t) = ltarge fOr
cos(w;ok) cos wiok — ¢10) t € (T, To]. Following similar procedure, we can reconstruct
In a simulation environment, we understand by “dischargethe law for Rq(t). By considering thatn(0s) = ng, and
the integration of the PDE equation (1)—(2). In each iterationsing linear interpolation, we can define the law fgt).”
of the extremum seeking procedu¥k) is used to compute The reconstructed control laws are in turn fed into the PDE



system (1)—(2). Givenlini, the PDE equation is integrated The initial values for8 are arbitrarily chosen as follows
to obtainy(p,t), and finally(p,t), which are necessary to

evaluate the cost functiod(k) = J(8(k)), in (8). Ot = [0.93872IMA, 1.15723MA, 115723MW,
0.860596MW, 1.09253MW, 1.09253x 2 MW,
V. SIMULATION RESULTS 1x10°%m3,2x 10%m 3 4 x 10°m 3.

In this section, we present simulation results showing bothhe initial poloidal fluxy is shown in Fig. 7-(b). The target
the dynamic response of the model proposed for the inductiveprofile is shown in Fig. 7-(c).
“Phase I" and the effectiveness of the extremum seeking A minimum is reached in less than 300 iterations of

design to solve the optimal control problem (8). the extremum seeking algorithm. The corresponding time
evolutions for the three actuators are shown in Fig. 7-(d),
A. Dynamic Response of Inductive-Phase Model Fig. 7-(e), and Fig. 7-(f).

In this simulation, we consider the time interval VI. CONCLUSIONS AND FUTURE WORKS

[0.55,3.68]. The curreni (t) evolution is shown in Fig. 7-(a), A simplified dynamic model describing the evolution of
whereas the initial poloidal fluy is shown in Fig. 7-(b). The he poloidal flux, and therefore theprofile, during the induc-

- : - 9 3y_ - \ . ) .
average density scales with the current, dét)(10*m )= tjye phase of the discharge has been introduced. Simulation
3I(t) (MA), and the total poweRe(t) is kept constant at regyits show qualitative agreement with experiments.
5.0(MW). A multi-parameter, extremum-seeking, open-loop, optimal

The system of equations describing the poloidal fluxontroller has been designed, and successfully tested in
evolution has been successfully implemented in a numericgimulations, to match a desiredprofile within a predefined
solver. Fig. 6 shows the profile evolutions for the total currern§me window during the flattop phase of the tokamak dis-
density <E§'_BO>, the non-inductive current densit?’g;i?, charge. The extremum-seeking procedure has shown to be
and the poloidal fluxp, based on the dynamic model (1)—effective to deal with an optimal control problem defined
(7). As expected, the area under the current density curfer a nonlinear PDE system subject to many constraints in
increases with time, consistent with the boundary conditioits actuators. Based on the promising results obtained in the
related to the total current g = 1 and the current(t) simulation study, it is anticipated that the scheme can play
evolution shown in Fig. 7-(a). The maximum of the currentin important role in fusion plasma physics experiments at
density moves slowly towards an smaller radius, as expectéte DIlI-D tokamak.
from a diffusive process. Given the three order of magnitude
variation in the plasma resistivity (small in the hot center
and large at the cold edge), the current density rapidlyl] J. Sheffield, “The physics of magnetic fusion reactof@eviews of

o0 i~ Modern Physics, vol. 66, no. 3, pp. 1015-1103, 1994.
equilibrates at the edge, but evolves much more slowly Ny 3 Wesson’)%fs < 3rd ed. Cpl‘;rendon Press, Oxford, 2004.

the center. The small spatial scale structure mndqg at a  [3] J. P. Freidberg)deal magnetohydrodynamics. New York: Plenum
small radius is an artifact of the numerical scheme used to Press, 1987.

; ; ; 4] A. Pironti and M. Walker, “Control of Tokamak PlasmadEEE
derive these variables from the calculated poloidal flux. Thé ] Control System Magazine, vol. 25, no. 5. pp. 24-29, 2005.
simulated profile evolutions show qualitative agreement withys) —_ «Fusion, tokamaks, and plasma contrdIZEE Control System
tokamak experiments. Magazine, vol. 25, no. 5, pp. 30-43, 2005.

[6] E. Schuster and M. Ariola, “The Role of Controls in Nuclear Fusion,”
in Proceedings of the 45th IEEE Conference on Decision and Control,
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