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Abstract— The matching problem for a low energy trans 0 L
port system in a charged particle accelerator is approached I
using the extremum seeking feedback method for non-model
based optimization. The beam dynamics are modeled using the Drift Drift Drift Drift Drift
KV (Kapchinsky-Vladimirsky) envelope equations. Extremum X, . xﬁn
seeking is employed for the lens tuning in the beam matching
system. Numerical smulationsillustrate the effectiveness of this 91 92 93 94
approach.

Fig. 1. Matching Channel

. INTRODUCTION
) ) uses of control are numerous: from the magnet power sup-

In a particle accelerator: charged particles such as eleﬁﬁes, to RF systems, to various control loops dedicated to
trons, protons, or heavy ions are accelerated by electr@artain properties of the beam (steering, phase and position
magnetic fields to serve as light source (e.g., synchrotrgp storage rings, etc.). In this work we approach the beam
radiation) or to collide with targets. In the last case, as fhatching problem, where the beam must be matched to the
result of the collision many other subatomic particles argcceptance ellipse of an accelerating structure or transport
created and detected. From the information collected by thgtion. Specifically we consider a fixed geometry matching
detectors, properties of the particles and their interactipns C&Bction consisting of four quadrupole lenses. The objective
be determined. Accelerators are used for research in highf this system is to take any arbitrary initial beam state
energy and nuclear physics, synchrotron radiation, medicghg “match” it to the acceptance ellipse of the following
therapies, and some industrial gpplications. The higher t@%ction, i.e., any given initial state,,; to a prescribed final
energy of the accelerated particles, the more closely thgates ,,, through the control of the lens strengths in the
structure of matter can be probed. transport (matching) channel. A review of beam transport

The first stage of the particle accelerator is the sourccluding matching was recently presented in [1]. We assume
In this stage, charged particles are produced, either ioRse matching channel to be composed of discrete beamline
via an ion source, or electrons via a cathode. Particlglements, such as lenses, and drifts. These elements are
accelerators come in two basic designs: linear (linac) anghscaded along the beam axis, considered zthaxis, to
circular (synchrotron). The longer the main section of thgorm the matching channel. This configuration is depicted
linac, the higher the energy of the particles it can produces Figure 1. The input to the lenses, labeléd 6,, 65, and
The length of a linac can be on the order of kilometers, angl, in the figure, represent the focusing strength of the lenses
more. In both the linac and the synchrotron, the particlegnd are the parameters of the channel that may be varied.
gain energy by interacting with electromagnetic fields. For a The optimal control of the lens strengths to match a beam

traveling wave structure, bunches of ions are accelerated #dm an initial state to a prescribed final state was already

g]cehiz‘?/lemdebwag r?cﬁlrjéfnei;if F')[lrjlzhe:sggor:ego?%hi Wg\r{[?élgshlv?/i T proached by one of the authors [2] for the six lenses case,
y sy 9 P 9 P n under-determined situation, using local (nonlinear pro-

the phase of the accelerating field. Standing wave structure . . .
and static field machines, use RF gaps instead to accelerngmmmg) and global (dynamic programming) methods. The

. . . ; Obal method is practical only for axisymmetric systems.
the particles. At the end of the main section the high-ener has been shown to become too computationally intensive
beam of charged particles hits the target.

In the desi f ticl lerator. feedback ¢ for particle beams with more degrees of freedom. For these
r; © e&gn ot a particle acct_e ?ra otr, feteh ac tcon ;‘g%ams, the local method is substantially faster at the expense
Systems are becoming an essential part of the system. inding local minima of the cost functional, which may not
o . o Qe the best (global) solution. The major shortcoming of these
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0 (z)“ are also given desired final conditions, or target conditions, at
z = L, the exit location of the matching channel. We denote
K0, this target conditions asX(;.,, X/,,.) and tiar, Ys,,.). They
k0, are prescribed by the acceptance requirements of the next
L section of the transport or accelerator system.
— — —* Denotingz =[X X' Y Y’]", we define
e Lq Ld Xnu Xfin
KO, r X'
o, s =a(0) = | | g =a(D) = | Y10 |L @)

Fig. 2. Focusing function
In addition, we define a target value far denoted as
present completely upon the experience, judgement, and ip;,. = [X,,, X! Yiar ytfm]T, and desired beam
tuition of the operator. In this work we consider the usage Qjrofiles (beam trajectories) fak (z) and Y'(z) denoted as
extremum seeking as optimization technique. As a real—timgdes(z) andY.,(z) respectively. Giver;,;, Tiar, Xdes(2)
non-model-based optimization technique, extremum seekingyd Yies(z), we use an extremum seeking procedure to
is well suited to overcome the limitations described abovginimize the cost function/ given by

for model-based optimization methods. The performance of

1

this technique in terms of robustness against uncertainties, = {ki1J1 +kaJ2 +k3J3}2 (4)
computational demand, and ability to deal with cost functiong; = Ky (Xy;, — Xta’rget)2 + Ky (Yin — ymget)2
full of local minima, is reported. _ I e 2 I 2

The paper is organized as follows. In Section 2 thd? = Kde (XFin = Xiargee)” + Kav (Vin = Yiarger)
optimization problem is deflned_. Section 3 mtroduces_thg3 _ / w(z) [Kz' (X(2) —Xdes(Z))2
fundamentals of extremum seeking. The results of the simu- 0
lation study are presented in Section 4. The paper is closed YKy (Y(2) — Ydes(z))2:| d
by a summary in Section 5. 8 ’

where Kx, Ky, Kux, Kaqv, Kix, and K;y are weight
constants, anav, is an integral weight function.

Assuming a continuous, elliptically-symmetric particle The problem is formulated as finite-“time” optimal control
beam, we model its dynamics using the KV coupled{0 < z < L), with bang-bang controls of fixed durations
envelope equations [3]. Let the coordinate represent the but varying intensities (i.e., with a very coarse discretization
position along the design trajectory, and thus iheplane in “time” which results in a highly constrained waveform
is the transverse plane for the particle beam. At each for the controld as it is shown in Fig. 2), for a plant that
location, letX (z) andY (z) represent the semi-axes of theis nonlinear. This is far from being a standard optimization
beam envelope in the andy planes, respectively. The KV problem. To add complexity to the problem, we are seeking
equations then appear as robustness against uncertainties of the system for a successful
practical implementation of the control method.

II. PROBLEM DEFINITION

X" —0(2)X — 2K i =0 @)
X+Y X3 [1l. EXTREMUM SEEKING
2
Y +0(2)Y — 2K _ % = 0 ) Extremum seeking control, a popular tool in control appli-
X+Y Y cations in the 1940-50’s, has seen a resurgence in popularity

where the prime indicates differentiation with respectzto as a real time optimization tool in different fields of en-
that varies from0 to L and plays the role of “time”. The gineering [4]. Extremum seeking is applicable in situations
function 6(z) is the focusing (control) functionK is the where there is a nonlinearity in the control problem, and
beam perveancey andey are the effective emittances of the nonlinearity has a local minimum or a maximum. The
the beam in ther and y planes, respectively. The focusingparameter space can be multivariable. In this paper we use
function 6(z), is shown in Figure 2k is a constantL, is extremum seeking for iterative optimization 6fto make
the drift length, andZ, is the quadropole lens length. Thez;, as close as we can te,,,. For each new value of
matching channel parameters (lens strengths) must satisfy tie run the KV equations and obtaity;,,. We point out
following constraints0 < 6;,603 < 50, and —50 < 05,6, <  that, sincex,,, is given arbitrarily, zs;, iS obtained via
0. solving a system of nonlinear differential equations, and the
We are given initial conditions for the beamat 0, the lens input applied througl® is highly constrained in its
transport system’s entrance location. These conditions chavaveform, there may not exigtsuch that perfect matching is
acterize the beam coming from the preceding section of tleehievedy ¢, = 2+q,, thus we try to obtain the best possible
transport or accelerator system. They may be translated irdpproximate matching. We changé after each beam “run.”
initial conditions for the beam envelopes in thelane (X;,.;, Thus, we employ the discrete time variant [5] of extremum
X/, and in they plane {;.:, Y;.;). In matching systems we seeking. The implementation is depicted in Figure 3, wigere
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Fig. 3. Extremum seeking control scheme

fori=1,...

,4, wherewpqse = 0.95, and M (w) and ¢(w)

are respectively the magnitude and phase of the frequency
response of the high-pass filter in Figure 3.

For all the simulations, the initial condition of the beam
at the entrance of the channel and the target condition are

0.001474
. _ | —0.006013
i = 10.002014

0.007686

0.001094
—0.007865

0.003290 - O
0.011726

and the initial conditions for the extremum seeking parame-
ters aref; (0) = 03(0) = 25, and62(0) = 64(0) = —25.

Terminal Constraints Only: Figures 4 and 5 show the
denotes the variable of thé-transform. The high-pass filter extremum seeking results when the cost function parameters
is designed a® < h < 1, and the modulation frequency are given by
is selected such that = ar, 0 < la| < 1, ande is rational. Kx = 2000, Ky = 1000, Kgx =0, Ky =0,
The static nonlinear block' (¢) corresponds to one run of Kov — Kov — 0.kt = 1. oo — 0. ke — 0
the KV system. The objective is to minimiz& If J has a X R
global minimum its value is denoted ki and its argument The converged value df, and its associated final state, are

(10)

by 6*.
In this case, we are dealing with a multi-parameter ex- 28.0635 0.001091
tremum seeking procedure, where the variables are writtenéfm — —33.4561 ) Tfin = —0.007151 (11)
as ’ 23.7620 0.003294
. —34.4235 0.007128
k 61 (k k
022 k; R 9:% k; 22 kg Comparingz #;,, with z.,,, we can note that we have a very
Ok) = | o) |0k =1 5 , &(k) = i good matching forX and Y, which was our goal i, =
3(k) Qi”(k) Sa(k) ks = 0). However, although the matching fof’ is probably
04 (k) 0,4(k) €a(k)

acceptable, the matching fdf’ is not. Figure 4-c shows
The extremum seeking constants shown in Figure 3 atbe beam envelope as a function offor § = 6,,. The
written asa = b = diag([ a1 a» a3 a4 ]), andy = time evolution offy, 62, 3, 6, in Figure 4- b shows a fast
dz’ag([ Y1 Y2 Y3 T4 ]). In addition, we denote convergence. We can see that afté iteration we arrive

to what we can consider a steady state situation. This fast

COSE‘*“’Z% Cosgwlllz - jﬁl; convergence can be also noted looking at the evolution of the
cos(wk) = Eﬁ:(iim ,cos(wk—¢) = ggz(izk - ¢§) cost function in Figure 4-a. The complexity of the problem
cos(wak) cos(wak — ¢a) is evident from Figure 5 where the cost function is plotted as

a function oféy, 65, 63, 6,. Each combination of’s defines

In each iteration of the extremum seeking procedd¢g) a case. In Figure 5-d,, for i = 1,2, 3,4, is varied from0 to

is used to compute the focusing functiéiiz), shown in 50 in steps of5. In Figure 5-b9;, for i = 1,2, 3,4, is varied
Figure 2, which is in turn fed into the KV equations (1) andfom 35 to 41 in steps ofl. The negative peak corresponds to
(2). Givenz;,;, the KV equations are integrated to obtaind = [ 38 —38 38 —38 |7, which seems to be a global

X(2), Y(2), andz;,. The output of the nonlinear static minimum. In Figure 5-cf, is varied from27.8 to 28.3, 6,

map, J(k) = J(6(k)), is then obtained by evaluating (4) is varied from—33.2 to —33.7, 05 is varied from23.5 to

and used to computé(k + 1) according to the extremum 24, 0, is varied from—34.2 to —34.7 in steps of0.1. This

seeking procedure in Figure 3, or written equivalently as figure shows thad s, in (11) is a local minimum.
In order to obtain a better matching for the derivatives,

Ji(k) = —hJp(k—=1)+J(k) = J(k—1) (5) we considered the case characterized by the cost function
E(k) = Jp(k)bcos(wk — ¢) (6) parameters
Ok +1) = 0k) —E(k) ™ Kx = 2000, Ky =100, Kox =1, Koy =1, (15
9(/€+1) = 0(k+1)+aco&(w(k+1)) (8) KiX :Kiy :0, kl = ]., ]fg :1, k3 =0.

Figures 6 shows the extremum seeking results. The con-

The physical parameters used in the simulations present\é%rged value ob), and its associated final state, are

IV. SIMULATION RESULTS

in this section areK = 2.7932 x 1075, ex = 6 x 1079, 35.978 0.001070

ey =6x107°, k = 2.6689, Ly = 0.1488, L, = 0.0610, and A ~33.933 —0.006730

L = 0.988. In addition, the extremum seeking parameters are Ofin = 21.384 s Tfin =1 0.003289 (13)
h= 04, w; = Wy, x T 3 = 01574, andg; = —¢(w;) —32.508 0.011034
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Comparingzs;, with z.,,., we can note that we still have Figure 8-b. This figure also shows the effect of varying
a very good matching folX andY, and we improve the a;, as, as and a4 as functions of the value of. It is
matching forY”’ keeping an acceptable matching f&f. It  possible to note the steps in the evolutionjofthanks to the
is interesting to note that the value fé;m is very different change of the sinusoidals’ amplitudes. Figure 8 also shows
from the one in the previous case. Figure 6-c shows the beahre cost function plotted as a function éf, 0-, 03, 0,.
envelope as a function affor § = éf,m. The time evolution In Figure 8-b,6;, i = 1,2,3,4 is varied from0 to 50 in
of 61, 05, 05, 04 in Figure 6-b shows that the convergence isteps of5. In Figure 8-c,6;,i = 1,2,3,4 is varied from
not as fast as in the previous case, where we only care for the to 41 in steps of 1. The negative peak for the case
matching ofX andY’, but it is indeed very good. We can seef) = [ 38 —38 38 —38 |7 is manifested in this figure.
that after200 iteration we arrive to an acceptable solutionComparing this map with the ones corresponding to the cases
which improves even more with subsequent iterations. Thigith only terminal constrains we can note that the map is not
can be also noted from Figure 6-a, where the cost functicas spiky and in average (after an imaginary low-pass filter)
does not reach a steady value after 500 iterations. This is arbetter parabola is described.
indication that the result can be improved by increasing the Double Linear Interpolation as Desired Trajectory: The
number of iterations or possibly by changing some of theyolution of the beam profile corresponding to the global
variables of the extremum seeking procedure. minimum is not available in real applications. The designer
Real Trajectory asDesired Trajectory: We are interested s therefore required to have an intuitive understanding as to
in determining whether the extremum seeking proceduighat makes a good desired trajectory. The beam envelope
could converge to the global minimum if more informationwill track the desired trajectory as closely as possible. These
about this minimum were given. In this case we takg,(z)  conditions leads to optimality only if the desired trajectory
and Yy.s(z) as the solution of the KV equations whenis chosen properly (in an optimal sense). The choice of
6 =[38 —38 38 —38]%, the global minimum. The the desired trajectory is particularly important for under-
cost function parameters are chosen as determined systems where the number of lenses is strictly
Ky =200, Ky =200, Kyx =1, Kgy = 1, higher tha_n four. In_these cases the_ solution _for the matching
Kix = Kiy — 10000, ky = 1, ky = 1, ks = 1, (14) proplem (i.e., malflngrf-m_ = Z1qr) IS NOt umgue_ and the
choice of the desired trajectory has a decisive influence on
and the weightw(z) is chosen as shown in Figures 7-athe outcome of the optimization procedure. In this case we
Figures 7 and 8 show the extremum seeking results. Tiake Xq.s(z) and Yy.s(z) as a combination of two linear
converged value of, and its associated final state, are functions as shown in Figure 10-a (dotted line). The slope of
the last section of the desired beam profile coincides with the

38.028 0.001095 target conditions for the derivatives in order to facilitate their

éfm = ;83515'2%25 ) Tpin = (;86(2’,()2798171 . (15) matching. The use of only one linear function, connecting
: ‘ Xini andY;,;, with X,,,. andY,,, respectively, would be

—38.011 0.011725 in conflict with the terminal conditions for the derivatives.

Comparingz s, With ..., We can note that we have an Figures 9 and_ 10 show the extremum seeking results when
acceptable matching. In this case we are indeed convergilftf cost function parameters are given by

to§ = [ 38 —38 38 —38]7, the global minimum.
Figure 8-a shows the beam envelope as a functiorr of  Kx = 2000, Ky = 2000, Kqx =1, Kqy =1,

> L . (16)
for 6 = 0y;,, where it is possible to note thaX and Kix =Kijy =50, k1 =1, kp =1, k3 = 1.

Y perfectly matchX,., and Yy.s respectively. The time

evolution offy, 65, 05, 6, in Figure 7-c shows that a steady The integral weightu(z) is shown in Figures 9-a. We try not
value is reached after less thalf0 iterations. This can only to match the final section of the beam profile but also
also be noted from the evolution of the cost function ino reduce excursions in the middle section. The converged
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Comparingz;,; With zq,4c¢, We can note that we do have a
very good matching for the final conditions. It is interesting
to note how different is the value @fy;, from the global

minimum and at the same time how good is the matching. osl

The time evolution of;, 6,5, 03, 84 in Figure 9-c shows 0 ‘ ‘ ‘ ‘
that a steady value is reached aftsi0 iterations. This ° 20, 0o 08
can be also noted from Figure 9-b, where the cost function Fig. 10. Beam profile fob;,,,

does reach a steady value aftgi0 iterations, showing a

very fast convergence. Figure 10 shows the beam proﬁﬁytomatically adapts their gains or sinusoidal amp!itudes to
for 6;,. Not only the matching of the target COnditionsperma_nently seek a lower value of the cost fL.mCt_IOI’]. Th|s

is very good, but also the matching of the desired profnepotentlal scheme would be very useful for applications with

This is explained by how the cost function was definedSPiky cost function maps as the one considered in this work.
The figure also compares the beam profile ffgy, with the In addition, the scheme can be used for real-time opti-

nominal profile ¢ = [ 38 —38 38 —38 ]7). From the Mization taking advantage of its 'non—model-based nature,
comparison we can conclude that we achieve very simila¥hich represents an advantage with respect to other model-

final conditions reducing at the same time the excursion &fased optimization techniques such as nonlinear and dynamic
X(z) andY (). programming. To accelerate convergence, a hybrid scheme is
envisioned where the optimal lens strengths are computed
V. CONCLUSIONS off-line using extremum seeking or another optimization
A multi-parameter extremum seeking procedure has bed¢echnique, and used as initial conditior()) for an on-
implemented, and successfully tested in simulations, for tHme extremum seeking controller. Under this framework,
tuning of the lens strengths in a 4-lens matching channghe extremum seeking algorithm will be playing the role
Based on the promising results obtained in the simulatioof a non-model-based adaptive controller, which is one of
study, it is anticipated that the scheme can play an importait$ unique characteristics, that ensures a well-matched beam
role in an off-line design process. In terms of convergencat the end of the matching channel independently of the
speed, the method compares to or outperforms previousiyncertainties in the system parameters.
proposed schemes based on nonlinear and dynamic program-
ming. In terms of globality, the method resides between
them. Although globality cannot be guaranteed, we mustfll S:M. Lund and B. Bukh, “Stability properties of the transverse
- . . . ' envelope equations describing intense ion beam transjihys. Rev.
hlghll_ght at _thls pomt_ the capgpmty qf the s_:cheme of ST Accderators and Beams, vol. 7, 024801, 2004.
avoiding getting stuck in local minima with relatively large [2] C.K. Allen and M. Reiser, "Optimal transport of particle beams,’
values of the cost function. The modification of the amplitude N“Céeze‘zr_égsztr“me”ts and Methods in Physics Research, A 384, 1997,
of the SingSOi.dal expitatjon asa function of the Vallllje C?f th_e[3] IpIE)/I Kapchinskij and V.V. Vladimirskij, Proc. Int. Conf. on High-
cost function is key in this achievement. Such modification is  Energy Accelerators and Instrumentation, CERN, 1959, pp. 274-288.
motivated by the expertise of the operator and his knowledgé' Fn A;g;‘é[):cr‘kd V’\\"li-leKrsggb';eaj'“me Optimization by Extremum Seek-
of the sensitivity of the beam size at the end of the matchings J._gY. Choi, M. Krs{‘ic, K. Ariyur and J.S. Lee, “Extremum seeking
channel with respect to the different lenses. This suggests the control for discrete-time systems|EEE Transactions on Automatic

possibility of designing an extremum seeking scheme that Control, vol. 47, no. 2, pp. 318-323, 2002.
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