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Abstract— The matching problem for a low energy trans-
port system in a charged particle accelerator is approached
using the extremum seeking feedback method for non-model
based optimization. The beam dynamics are modeled using the
KV (Kapchinsky-Vladimirsky) envelope equations. Extremum
seeking is employed for the lens tuning in the beam matching
system. Numerical simulations illustrate the effectiveness of this
approach.

I. I NTRODUCTION

In a particle accelerator, charged particles such as elec-
trons, protons, or heavy ions are accelerated by electro-
magnetic fields to serve as light source (e.g., synchrotron
radiation) or to collide with targets. In the last case, as a
result of the collision many other subatomic particles are
created and detected. From the information collected by the
detectors, properties of the particles and their interactions can
be determined. Accelerators are used for research in high-
energy and nuclear physics, synchrotron radiation, medical
therapies, and some industrial applications. The higher the
energy of the accelerated particles, the more closely the
structure of matter can be probed.

The first stage of the particle accelerator is the source.
In this stage, charged particles are produced, either ions
via an ion source, or electrons via a cathode. Particle
accelerators come in two basic designs: linear (linac) and
circular (synchrotron). The longer the main section of the
linac, the higher the energy of the particles it can produce.
The length of a linac can be on the order of kilometers, and
more. In both the linac and the synchrotron, the particles
gain energy by interacting with electromagnetic fields. For a
traveling wave structure, bunches of ions are accelerated in
the same way a surfer is pushed along by a wave. This is
achieved by synchronizing the passage of the particles with
the phase of the accelerating field. Standing wave structures,
and static field machines, use RF gaps instead to accelerate
the particles. At the end of the main section the high-energy
beam of charged particles hits the target.

In the design of a particle accelerator, feedback control
systems are becoming an essential part of the system. The

E. Schuster is with the Department of Mechanical Engineering and
Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, PA
18015-0385, USA,schuster@lehigh.edu

E. Morinaga is with the Department of Computer-Controlled Mechanical
Systems, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan,
morinaga@newton.mech.eng.osaka-u.ac.jp

C.K. Allen is with Los Alamos National Laboratory, Los Alamos, NM
87545, USA,ckallen@lanl.gov
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Fig. 1. Matching Channel

uses of control are numerous: from the magnet power sup-
plies, to RF systems, to various control loops dedicated to
certain properties of the beam (steering, phase and position
in storage rings, etc.). In this work we approach the beam
matching problem, where the beam must be matched to the
acceptance ellipse of an accelerating structure or transport
section. Specifically we consider a fixed geometry matching
section consisting of four quadrupole lenses. The objective
of this system is to take any arbitrary initial beam state
and “match” it to the acceptance ellipse of the following
section, i.e., any given initial statexini to a prescribed final
statexfin, through the control of the lens strengths in the
transport (matching) channel. A review of beam transport
including matching was recently presented in [1]. We assume
the matching channel to be composed of discrete beamline
elements, such as lenses, and drifts. These elements are
cascaded along the beam axis, considered thez axis, to
form the matching channel. This configuration is depicted
in Figure 1. The input to the lenses, labeledθ1, θ2, θ3, and
θ4 in the figure, represent the focusing strength of the lenses
and are the parameters of the channel that may be varied.

The optimal control of the lens strengths to match a beam
from an initial state to a prescribed final state was already
approached by one of the authors [2] for the six lenses case,
an under-determined situation, using local (nonlinear pro-
gramming) and global (dynamic programming) methods. The
global method is practical only for axisymmetric systems.
It has been shown to become too computationally intensive
for particle beams with more degrees of freedom. For these
beams, the local method is substantially faster at the expense
of finding local minima of the cost functional, which may not
be the best (global) solution. The major shortcoming of these
methods is their dependence on the model. The accuracy of
the calculation is limited by the uncertainties associated with
the initial beam conditions, magnet modeling, exact beam
current, emittances, magnet locations, etc. Therefore, the
implementation of the calculated element strengths in a real
experiment does not yield true matching conditions. Under
these circuntances, the “knobs” for the lens strengths must
be adjusted on-line. The success of such a procedure relies at
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present completely upon the experience, judgement, and in-
tuition of the operator. In this work we consider the usage of
extremum seeking as optimization technique. As a real-time
non-model-based optimization technique, extremum seeking
is well suited to overcome the limitations described above
for model-based optimization methods. The performance of
this technique in terms of robustness against uncertainties,
computational demand, and ability to deal with cost functions
full of local minima, is reported.

The paper is organized as follows. In Section 2 the
optimization problem is defined. Section 3 introduces the
fundamentals of extremum seeking. The results of the simu-
lation study are presented in Section 4. The paper is closed
by a summary in Section 5.

II. PROBLEM DEFINITION

Assuming a continuous, elliptically-symmetric particle
beam, we model its dynamics using the KV coupled-
envelope equations [3]. Let thez coordinate represent the
position along the design trajectory, and thus thexy plane
is the transverse plane for the particle beam. At eachz
location, letX(z) and Y (z) represent the semi-axes of the
beam envelope in thex andy planes, respectively. The KV
equations then appear as

X ′′ − θ(z)X − 2K

X + Y
− ε2X

X3
= 0 (1)

Y ′′ + θ(z)Y − 2K

X + Y
− ε2Y

Y 3
= 0 (2)

where the prime indicates differentiation with respect toz,
that varies from0 to L and plays the role of “time”. The
function θ(z) is the focusing (control) function.K is the
beam perveance,εX and εY are the effective emittances of
the beam in thex and y planes, respectively. The focusing
function θ(z), is shown in Figure 2;κ is a constant,Ld is
the drift length, andLq is the quadropole lens length. The
matching channel parameters (lens strengths) must satisfy the
following constraints:0 ≤ θ1, θ3 ≤ 50, and−50 ≤ θ2, θ4 ≤
0.

We are given initial conditions for the beam atz = 0, the
transport system’s entrance location. These conditions char-
acterize the beam coming from the preceding section of the
transport or accelerator system. They may be translated into
initial conditions for the beam envelopes in thex plane (Xini,
X ′

ini) and in they plane (Yini, Y
′
ini). In matching systems we

are also given desired final conditions, or target conditions, at
z = L, the exit location of the matching channel. We denote
this target conditions as (Xtar,X

′
tar) and (Ytar, Y

′
tar). They

are prescribed by the acceptance requirements of the next
section of the transport or accelerator system.

Denotingx = [X X ′ Y Y ′]T , we define

xini =x(0) =




Xini

X ′
ini

Yini

Y ′
ini


 , xfin =x(L) =




Xfin

X ′
fin

Yfin

Y ′
fin


 . (3)

In addition, we define a target value forx denoted as
xtar = [Xtar X ′

tar Ytar Y ′
tar]

T , and desired beam
profiles (beam trajectories) forX(z) and Y (z) denoted as
Xdes(z) andYdes(z) respectively. Givenxini, xtar, Xdes(z)
and Ydes(z), we use an extremum seeking procedure to
minimize the cost functionJ given by

J = {k1J1 + k2J2 + k3J3}
1
2 (4)

J1 = KX (Xfin − Xtarget)
2 + KY (Yfin − Ytarget)

2

J2 = KdX

(
X ′

fin − X ′
target

)2 + KdY

(
Y ′

fin − Y ′
target

)2

J3 =
∫ L

0

w(z)
[
KiX (X(z) − Xdes(z))2

+KiY (Y (z) − Ydes(z))2
]
dz,

where KX , KY , KdX , KdY , KiX , and KiY are weight
constants, andwz is an integral weight function.

The problem is formulated as finite-“time” optimal control
(0 ≤ z ≤ L), with bang-bang controls of fixed durations
but varying intensities (i.e., with a very coarse discretization
in “time” which results in a highly constrained waveform
for the controlθ as it is shown in Fig. 2), for a plant that
is nonlinear. This is far from being a standard optimization
problem. To add complexity to the problem, we are seeking
robustness against uncertainties of the system for a successful
practical implementation of the control method.

III. E XTREMUM SEEKING

Extremum seeking control, a popular tool in control appli-
cations in the 1940-50’s, has seen a resurgence in popularity
as a real time optimization tool in different fields of en-
gineering [4]. Extremum seeking is applicable in situations
where there is a nonlinearity in the control problem, and
the nonlinearity has a local minimum or a maximum. The
parameter space can be multivariable. In this paper we use
extremum seeking for iterative optimization ofθ to make
xfin as close as we can toxtar. For each new value ofθ
we run the KV equations and obtainxfin. We point out
that, sincextar is given arbitrarily, xfin is obtained via
solving a system of nonlinear differential equations, and the
lens input applied throughθ is highly constrained in its
waveform, there may not existθ such that perfect matching is
achieved,xfin = xtar, thus we try to obtain the best possible
approximate matching. We changeθ after each beam “run.”
Thus, we employ the discrete time variant [5] of extremum
seeking. The implementation is depicted in Figure 3, whereq



Fig. 3. Extremum seeking control scheme

denotes the variable of theZ-transform. The high-pass filter
is designed as0 < h < 1, and the modulation frequencyω
is selected such thatω = απ, 0 < |α| < 1, andα is rational.
The static nonlinear blockJ(θ) corresponds to one run of
the KV system. The objective is to minimizeJ . If J has a
global minimum its value is denoted byJ∗ and its argument
by θ∗.

In this case, we are dealing with a multi-parameter ex-
tremum seeking procedure, where the variables are written
as

θ(k) =




θ1(k)
θ2(k)
θ3(k)
θ4(k)


 , θ̂(k) =




θ̂1(k)
θ̂2(k)
θ̂3(k)
θ̂4(k)


 , ξ(k) =




ξ1(k)
ξ2(k)
ξ3(k)
ξ4(k)


 .

The extremum seeking constants shown in Figure 3 are
written asa = b = diag(

[
a1 a2 a3 a4

]
), and γ =

diag(
[

γ1 γ2 γ3 γ4

]
). In addition, we denote

cos(ωk) =




cos(ω1k)
cos(ω2k)
cos(ω3k)
cos(ω4k)


 , cos(ωk−φ) =




cos(ω1k − φ1)
cos(ω2k − φ2)
cos(ω3k − φ3)
cos(ω4k − φ4)


 .

In each iteration of the extremum seeking procedure,θ(k)
is used to compute the focusing functionθ(z), shown in
Figure 2, which is in turn fed into the KV equations (1) and
(2). Given xini, the KV equations are integrated to obtain
X(z), Y (z), and xfin. The output of the nonlinear static
map, J(k) = J(θ(k)), is then obtained by evaluating (4)
and used to computeθ(k + 1) according to the extremum
seeking procedure in Figure 3, or written equivalently as

Jf (k) = −hJf (k − 1) + J(k) − J(k − 1) (5)

ξ(k) = Jf (k)b cos(ωk − φ) (6)

θ̂(k + 1) = θ̂(k) − γξ(k) (7)

θ(k + 1) = θ̂(k + 1) + a cos(ω(k + 1)) . (8)

IV. SIMULATION RESULTS

The physical parameters used in the simulations presented
in this section areK = 2.7932 × 10−6, εX = 6 × 10−6,
εY = 6×10−6, κ = 2.6689, Ld = 0.1488, Lq = 0.0610, and
L = 0.988. In addition, the extremum seeking parameters are
h = 0.4, ωi = ωi

base × π, γi = 0.1M(ω1)
M(ωi)

, andφi = −φ(ωi)

for i = 1, . . . , 4, whereωbase = 0.95, andM(ω) andφ(ω)
are respectively the magnitude and phase of the frequency
response of the high-pass filter in Figure 3.

For all the simulations, the initial condition of the beam
at the entrance of the channel and the target condition are

xini =




0.001474
−0.006013
0.002014
0.007686


 , xtar =




0.001094
−0.007865
0.003290
0.011726


 , (9)

and the initial conditions for the extremum seeking parame-
ters areθ1(0) = θ3(0) = 25, andθ2(0) = θ4(0) = −25.

Terminal Constraints Only: Figures 4 and 5 show the
extremum seeking results when the cost function parameters
are given by

KX = 2000, KY = 1000, KdX = 0, KdY = 0,
KiX = KiY = 0, k1 = 1, k2 = 0, k3 = 0.

(10)

The converged value ofθ, and its associated final state, are

θ̂fin =




28.0635
−33.4561
23.7620
−34.4235


 , xfin =




0.001091
−0.007151
0.003294
0.007128


 . (11)

Comparingxfin with xtar, we can note that we have a very
good matching forX and Y , which was our goal (k2 =
k3 = 0). However, although the matching forX ′ is probably
acceptable, the matching forY ′ is not. Figure 4-c shows
the beam envelope as a function ofz for θ = θ̂fin. The
time evolution ofθ1, θ2, θ3, θ4 in Figure 4- b shows a fast
convergence. We can see that after100 iteration we arrive
to what we can consider a steady state situation. This fast
convergence can be also noted looking at the evolution of the
cost function in Figure 4-a. The complexity of the problem
is evident from Figure 5 where the cost function is plotted as
a function ofθ1, θ2, θ3, θ4. Each combination ofθ’s defines
a case. In Figure 5-a,θi, for i = 1, 2, 3, 4, is varied from0 to
50 in steps of5. In Figure 5-b,θi, for i = 1, 2, 3, 4, is varied
from 35 to 41 in steps of1. The negative peak corresponds to
θ = [ 38 −38 38 −38 ]T , which seems to be a global
minimum. In Figure 5-c,θ1 is varied from27.8 to 28.3, θ2

is varied from−33.2 to −33.7, θ3 is varied from23.5 to
24, θ4 is varied from−34.2 to −34.7 in steps of0.1. This
figure shows that̂θfin in (11) is a local minimum.

In order to obtain a better matching for the derivatives,
we considered the case characterized by the cost function
parameters

KX = 2000, KY = 1000, KdX = 1, KdY = 1,
KiX = KiY = 0, k1 = 1, k2 = 1, k3 = 0.

(12)

Figures 6 shows the extremum seeking results. The con-
verged value ofθ, and its associated final state, are

θ̂fin =




35.978
−33.933
21.384
−32.508


 , xfin =




0.001070
−0.006730
0.003289
0.011034


 . (13)
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Fig. 4. Cost function evolution (a),θ evolution (b), beam profile forθfin (c)
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Fig. 5. Cost function map for different combinations ofθ1, θ2, θ3, θ4
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Fig. 6. Cost function evolution (a),θ evolution (b), beam profile forθfin (c)
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Fig. 7. Integral weight (a), cost function (b),θ evolution (c)
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Fig. 8. Beam profile forθfin (a). Cost function map for different combinations ofθ1, θ2, θ3, θ4 (b), (c).

Comparingxfin with xtar, we can note that we still have
a very good matching forX and Y , and we improve the
matching forY ′ keeping an acceptable matching forX ′. It
is interesting to note that the value forθ̂fin is very different
from the one in the previous case. Figure 6-c shows the beam
envelope as a function ofz for θ = θ̂fin. The time evolution
of θ1, θ2, θ3, θ4 in Figure 6-b shows that the convergence is
not as fast as in the previous case, where we only care for the
matching ofX andY , but it is indeed very good. We can see
that after200 iteration we arrive to an acceptable solution
which improves even more with subsequent iterations. This
can be also noted from Figure 6-a, where the cost function
does not reach a steady value after 500 iterations. This is an
indication that the result can be improved by increasing the
number of iterations or possibly by changing some of the
variables of the extremum seeking procedure.

Real Trajectory as Desired Trajectory: We are interested
in determining whether the extremum seeking procedure
could converge to the global minimum if more information
about this minimum were given. In this case we takeXdes(z)
and Ydes(z) as the solution of the KV equations when
θ = [ 38 −38 38 −38 ]T , the global minimum. The
cost function parameters are chosen as

KX = 200, KY = 200, KdX = 1, KdY = 1,
KiX = KiY = 10000, k1 = 1, k2 = 1, k3 = 1,

(14)

and the weightw(z) is chosen as shown in Figures 7-a.
Figures 7 and 8 show the extremum seeking results. The
converged value ofθ, and its associated final state, are

θ̂fin =




38.028
−38.025
38.123
−38.011


 , xfin =




0.001095
−0.007871
0.003291
0.011725


 . (15)

Comparingxfin with xtar, we can note that we have an
acceptable matching. In this case we are indeed converging
to θ = [ 38 −38 38 −38 ]T , the global minimum.
Figure 8-a shows the beam envelope as a function ofz
for θ = θ̂fin, where it is possible to note thatX and
Y perfectly matchXdes and Ydes respectively. The time
evolution ofθ1, θ2, θ3, θ4 in Figure 7-c shows that a steady
value is reached after less than400 iterations. This can
also be noted from the evolution of the cost function in

Figure 8-b. This figure also shows the effect of varying
a1, a2, a3 and a4 as functions of the value ofJ . It is
possible to note the steps in the evolution ofJ thanks to the
change of the sinusoidals’ amplitudes. Figure 8 also shows
the cost function plotted as a function ofθ1, θ2, θ3, θ4.
In Figure 8-b,θi, i = 1, 2, 3, 4 is varied from0 to 50 in
steps of5. In Figure 8-c,θi, i = 1, 2, 3, 4 is varied from
35 to 41 in steps of 1. The negative peak for the case
θ = [ 38 −38 38 −38 ]T is manifested in this figure.
Comparing this map with the ones corresponding to the cases
with only terminal constrains we can note that the map is not
as spiky and in average (after an imaginary low-pass filter)
a better parabola is described.

Double Linear Interpolation as Desired Trajectory: The
evolution of the beam profile corresponding to the global
minimum is not available in real applications. The designer
is therefore required to have an intuitive understanding as to
what makes a good desired trajectory. The beam envelope
will track the desired trajectory as closely as possible. These
conditions leads to optimality only if the desired trajectory
is chosen properly (in an optimal sense). The choice of
the desired trajectory is particularly important for under-
determined systems where the number of lenses is strictly
higher than four. In these cases the solution for the matching
problem (i.e., makingxfin = xtar) is not unique and the
choice of the desired trajectory has a decisive influence on
the outcome of the optimization procedure. In this case we
take Xdes(z) and Ydes(z) as a combination of two linear
functions as shown in Figure 10-a (dotted line). The slope of
the last section of the desired beam profile coincides with the
target conditions for the derivatives in order to facilitate their
matching. The use of only one linear function, connecting
Xini and Yini, with Xtar and Ytar respectively, would be
in conflict with the terminal conditions for the derivatives.
Figures 9 and 10 show the extremum seeking results when
the cost function parameters are given by

KX = 2000, KY = 2000, KdX = 1, KdY = 1,
KiX = KiY = 50, k1 = 1, k2 = 1, k3 = 1.

(16)

The integral weightw(z) is shown in Figures 9-a. We try not
only to match the final section of the beam profile but also
to reduce excursions in the middle section. The converged
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Fig. 9. Integral weight (a), cost function (b),θ evolution (c)

value ofθ, and its associated final state, are

θ̂fin =




34.855770
−30.710796
14.736266
−30.669086


 , xfin =




0.001093
−0.007343
0.003280
0.010630


 . (17)

Comparingxini with xtarget, we can note that we do have a
very good matching for the final conditions. It is interesting
to note how different is the value of̂θfin from the global
minimum and at the same time how good is the matching.
The time evolution ofθ1, θ2, θ3, θ4 in Figure 9-c shows
that a steady value is reached after150 iterations. This
can be also noted from Figure 9-b, where the cost function
does reach a steady value after150 iterations, showing a
very fast convergence. Figure 10 shows the beam profile
for θfin. Not only the matching of the target conditions
is very good, but also the matching of the desired profile.
This is explained by how the cost function was defined.
The figure also compares the beam profile forθfin with the
nominal profile (θ = [ 38 −38 38 −38 ]T ). From the
comparison we can conclude that we achieve very similar
final conditions reducing at the same time the excursion of
X(z) andY (z).

V. CONCLUSIONS

A multi-parameter extremum seeking procedure has been
implemented, and successfully tested in simulations, for the
tuning of the lens strengths in a 4-lens matching channel.
Based on the promising results obtained in the simulation
study, it is anticipated that the scheme can play an important
role in an off-line design process. In terms of convergence
speed, the method compares to or outperforms previously
proposed schemes based on nonlinear and dynamic program-
ming. In terms of globality, the method resides between
them. Although globality cannot be guaranteed, we must
highlight at this point the capability of the scheme of
avoiding getting stuck in local minima with relatively large
values of the cost function. The modification of the amplitude
of the sinusoidal excitation as a function of the value of the
cost function is key in this achievement. Such modification is
motivated by the expertise of the operator and his knowledge
of the sensitivity of the beam size at the end of the matching
channel with respect to the different lenses. This suggests the
possibility of designing an extremum seeking scheme that
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Fig. 10. Beam profile forθfin

automatically adapts their gains or sinusoidal amplitudes to
permanently seek a lower value of the cost function. This
potential scheme would be very useful for applications with
spiky cost function maps as the one considered in this work.

In addition, the scheme can be used for real-time opti-
mization taking advantage of its non-model-based nature,
which represents an advantage with respect to other model-
based optimization techniques such as nonlinear and dynamic
programming. To accelerate convergence, a hybrid scheme is
envisioned where the optimal lens strengths are computed
off-line using extremum seeking or another optimization
technique, and used as initial conditions (θ(0)) for an on-
line extremum seeking controller. Under this framework,
the extremum seeking algorithm will be playing the role
of a non-model-based adaptive controller, which is one of
its unique characteristics, that ensures a well-matched beam
at the end of the matching channel independently of the
uncertainties in the system parameters.
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