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Abstract— Dynamic characterization and fault detection
are carried out in enterprise servers using nonparametric
identification techniques based on sinusoidal excitation. The
introduction of subtle sinusoidal perturbations in computer
load variables or physical variables allows us to obtain
a dynamic input-output characterization in the frequency
domain. The input-output relationship is described in terms
of coupling coefficients between a wide variety of physical and
performance variables at different selected frequencies. This
innovative approach in the field of computer science, based
on a well-known system identification technique, has been
demonstrated in empirical studies to provide valuable dynamic
system characterization information that can be indispensable
to datacenter operations personnel for the functions of per-
formance management, capacity planning, quality-of-service
(QoS) assurance, dynamic resource provisioning, and root
cause analyses.

I. INTRODUCTION

An e-Commerce transaction server is a complex system
with hundreds of resource, performance, and throughput
parameters, making the study of relationships between
and among variables quite difficult using traditional “static
analysis” approaches. Currently, system performance for
servers is characterized by testing their operation under
maximum load, random load, and using performance bench-
marks that mimic typical user loads. These conventional ap-
proaches are not able to fully characterize transfer function
relationships among performance variables and establish
cause/effect relationship between them.

Dynamic characterization of complex systems such as en-
terprise compute servers and web servers can be achieved by
introducing perturbations in one or more “input” variables,
and measuring the time-dependent responses in one or
more “response” variables. These variables can be physical
variables (e.g., from distributed temperature, voltage, and
current transducers that are already built into the servers),
system resource variables, or quality-of-service (QoS) vari-
ables derived from system performance parameters. We
quantify this relationship between input variables and re-
sponse variables with a “dynamic coupling coefficient,”
which may be a function of load, or, more generally, may
be a multivariate function of very many input variables.
In a dynamically executing system such as a web server,
distributed synthetic transaction generators can be employed
for real-time continuous monitoring of system transaction
latencies. These “canary tests” provide QoS performance

E. Schuster is with the Department of Mechanical Engineering and
Mechanics, Lehigh University schuster@lehigh.edu

K. Gross is with Sun Microsystems Inc., RAS Computer Analysis
Laboratory kenny.gross@sun.com

metrics on a 24*7 basis as a dynamical function of sys-
tem load. Specifically, in order to measure the impact of
some performance parameter X on another performance
parameter Y, the synthetic transactions introduce an (ideally
small—to preserve linearity) perturbation in X, from which
the resulting effect on parameter Y, if any, can be measured.
As an example, one might compress a 10 Mbyte file and at-
tempt to discern the temperature effect on one or more ASIC
modules on a system board. Using time domain techniques,
such a measurement would very likely be impossible on a
large, multi-user, multi-cpu server, because of the extremely
small effect one is seeking to discern and the poor signal-to-
noise ratio. If such experiments were to be conducted during
times of high user activities, the perturbation in X would
have to be quite large to infer accurate coupling coefficients.
Such maneuvers would likely cause system overload events,
and would certainly interfere with the normal day-to-day
operation of the system one is seeking to characterize.

The well-known sinusoidal excitation technique for esti-
mation of transfer functions [1] allows us to translate this
input-output effect to the frequency domain. The advantage
of working with this technique is that we concentrate our
effort to a few number of frequency points (the frequencies
of the sinusoidal excitations) where the correlation or cou-
pling between variables is clearly seen. The technique has
been already adapted by one of the authors for the dynamic
system characterization of chaotic, nonlinearly interacting
physical variables in nuclear power plants [2], [3], and has
been used in many other industrial applications. The use
of multifrequency sinusoidal excitation and Fourier-based
techniques for identification and fault detection is already
pointed out in the literature more than three decades ago [4],
[5]. However, although there has been considerable success
with applying system identification techniques to comput-
ing systems over the last few years [6], these techniques
are exclusively based on a time-domain formulation. The
sinusoidal excitation technique, used now for dynamical
system characterization of large, multi-processor servers,
is an elegant and powerful exploratory analysis tool to
characterize complex system behavior, particularly the re-
lationships among various dynamic system parameters.

The paper is organized as follows. Section 2 introduces
briefly the mathematical underpinnings of the sinusoidal
excitation method as a nonparametric identification tech-
nique. Section 3 explains how the coupling coefficients are
computed taking into account the limitations imposed by
the discrete Fourier transform. Several experimental results
are presented in Section 4. Section 5 summarizes the paper.



II. MATHEMATICAL BACKGROUND

It is often the case that the mechanism of signal genera-
tion is so complex that it is very difficult, if not impossible,
to represent a signal as deterministic. In these cases, mod-
eling the signal as an outcome of a random variable is quite
useful. It is common to characterize this random variable
by simple statistical characteristics such as the mean, vari-
ance, skewness, kurtosis or autocorrelation function. For a
stationary random process, where the statistical properties
are invariant to a shift of time origin, we use the expectation
operator E to define the mean, variance, autocorrelation and
autocovariance of a sequence u[n] (where n is an integer
number) as

mu = = E{u[n]} (1)

σ2
u = E{(u[n] − mu)2} (2)

Ruu[τ ] = E{u[n]u[n − τ ]}. (3)

Cuu[τ ] = E{(u[n] − mu)(u[n − τ ] − mu)}, (4)

and the cross-correlation and cross-covariance as

Ryu[τ ] = E{y[n]u[n − τ ]}. (5)

Cyu[τ ] = E{(y[n] − my)(u[n − τ ] − mu)}. (6)

While stochastic signals are not absolutely summable or
square summable and consequently do not have Fourier
transforms, many of the properties of such signals can be
summarized in terms of the autocorrelation or autocovari-
ance sequence, for which the Fourier transform often exists.
We define the power spectrum density (PSD) as the Fourier
transform of the auto-covariance sequence,

Φuu(ejω) =
∑∞

n=−∞ Cuu[n]e−jωn,
Cuu[n] = 1

2π

∫ π

−π
Φuu(ejω)ejωndω,

(7)

and the cross spectrum density (CSD) as the Fourier trans-
form of the cross-covariance sequence,

Φyu(ejω) =
∑∞

n=−∞ Cyu[n]e−jωn,
Cyu[n] = 1

2π

∫ π

−π
Φyu(ejω)ejωndω.

(8)

By definition of the auto-covariance and the inverse Fourier
transform we can note that

σ2
u = Cuu[0] =

1
2π

∫ π

−π

Φuu(ejω)dω. (9)

For a linear time-invariant (LTI) system with impulse
response h[n], the output sequence y[n] is related to the
input sequence u[n] through the convolution sum,

y[n] = h[n]∗u[n]+v[n] =
∞∑

k=−∞
h[k]u[n−k]+v[n]. (10)

The noise sequence v[n], assumed to be uncorrelated with
the input sequence u[n], may represent not only real mea-
surement noise but also other phenomena such as uncontrol-
lable inputs or disturbances. We assume for convenience and
without any loss of generality, that mu = 0 and mv = 0.
Then, we have my =

∑∞
k=−∞ h[k]mu = 0.

The cross-correlation (cross-covariance) between the in-
put u[n] and output y[n] is given by

Ruy(= E{u[n]y[n − τ ]})

= E

{
u[n]

[ ∞∑
k=−∞

h[k]u[n − τ − k] + v[n − τ ]

]}

=
∞∑

k=−∞
h[k]E{u[n]u[n − τ − k]} + E{u[n]v[n − τ ]}

=
∞∑

k=−∞
h[k]Ruu[τ + k] + Ruv[τ ]

= h[τ ] ∗ Ruu[τ ] (11)

where we have used in the last step the fact that Ruu[−τ ] =
Ruu[τ ] and Ruv[τ ] = 0 (input and noise sequences are un-
correlated). The frequency response of the LTI system (10)
is defined as the Fourier transform of the impulse response
h[n] and denoted by H(ejω). Recalling the definitions of
the PSD (7) and CSD (8) , and taking into account that the
Fourier tranform of the convolution of h[τ ] with Ruu(τ)
is the product of their Fourier tranforms, we apply Fourier
transform to the last equation and obtain the relationship

Φuy(ejω) = H(ejω)Φuu(ejω). (12)

For applications of interest to computer monitoring and
characterization, a sequence is generally a representation of
a sampled signal of finite duration (N samples). For this
investigation we therefore seek to estimate the autocovari-
ance and cross-covariance based on finite-lenght sequences.
The estimators for the autocovariance and cross-covariance
are respectively defined as

Ĉuu(τ) =
1
N

N−1∑
n=0

(u[n] − m̂u)(u[n − τ ] − m̂u), (13)

Ĉyu(τ) =
1
N

N−1∑
n=0

(y[n] − m̂y)(u[n − τ ] − m̂u). (14)

Both estimators are asymptotically unbiased
(limN→∞ E{Ĉuu(τ)} = Cuu(τ), limN→∞ E{Ĉyu(τ)} =
Cyu(τ)) and in addition it can be showed that

E{Ĉ(τ)} =
N − |τ |

N
C(τ). (15)

Assuming, without loss of generality, the case where the
sample means m̂u = m̂y = 0, and taking into account
the definition of the estimators for the autocovariance and
cross-covariance, it is straightforward to show that

Φ̂uu(ω) =
∞∑

n=−∞
Ĉuu[n]e−jωn =

1
N

|U(ω)|2, (16)

Φ̂yu(ω) =
∞∑

n=−∞
Ĉyu[n]e−jωn =

1
N

Y (ω)U∗(ω), (17)

where U(ω) and Y (ω) are the discrete Fourier transforms
of u[n] and y[n] respectively and Puu(ω) ≡ 1

N |U(ω)|2 is



Fig. 1. Scheme of the system telemetry harness.

defined as the Periodogram of the sequence u[n]. Assuming
that the sequence u[n] is the sampled version (with sampling
frequency fs) of a continuous stationary random signal
s(t) whose PSD Φss(Ω) is bandlimited by the antialiasing
lowpass filter (−2π fs

2 < Ω < 2π fs

2 ), its PSD Φuu(ω) is
proportional to Φss(Ω) over the bandwith of the antialiasing
filter, i.e.,

Φuu(ω) =
1
Ts

Φss

(
ω

Ts

)
, |ω| < π,

then

Φuu(f) = Φss

(
ω

Ts

)
=

Φuu (ω)
fs

, |f | <
fs

2
.

Using the estimators (16) and (17), (12) suggests that the
frequency response of the system at some specific frequency
ωo can be estimated as:

Ĥ(ejωo) =
Φ̂uy(ejωo)
Φ̂uu(ejωo)

. (18)

III. ANALYTICAL APPROACH

A. System Telemetry Harness

An advanced system telemetry harness has been devel-
oped as part of this effort to collect, preprocess, analyze,
and archive hundreds of system performance, throughput,
quality-of-service (QoS), and physical variables. This com-
prehensive system telemetry harness produces a plethora of
performance variables to monitor. Their number is restricted
to about 150 by eliminating those that are either very poorly
correlated, those that are redundant (e.g., variables that
may report the same metric, but with different units), or
those with a high degree of colinearity. Detailed cross-
correlation and coherence analysis was performed at the
outset of the investigation. Since sampling for various per-
formance metrics is done at disparate (and sometimes time-
varying) sampling rates, an analytical resampling algorithm
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Fig. 2. (a) Input-output relationship. The system S has inputs u,
disturbances d and outputs y. (b) Transaction activity profile.

is invoked to align all the parameters and bring them to a
uniform, synchronized sampling rate. A schematic overview
of the system telemetry harness used for this investigation
is illustrated in Figure 1.

B. Spectral Decomposition of Digitized Telemetry Signals

We introduce here a multifrequency sinusoidal excitation
approach to perform dynamic system characterization of
complex, multi-CPU enterprise computer servers. We are
interested in determining the degree of coupling between
any pairwise combination of performance and/or physical
variables in our system. If such relationships can be estab-
lished with sufficiently good accuracy, the approach can be
used to proactively detect a wide range of system anomalies
that have heretofore been obscured by conventional time-
domain stress testing methods.

During system operation with normal user workloads,
very subtle sinusoidal perturbations are introduced in what
we call the input variables (typical user transaction re-
quests). The magnitude of the sinusoidal perturbation must
be small enough to preserve the linearity assumption around
the equilibrium point and the validity of the theory. The
effect of these perturbations in the output variables (quality-
of-service metrics) is quantified in terms of dynamic cou-
pling coefficients. Figure 2-a illustrates the procedure and
Figure 2-b shows an example transaction activity profile
used as sinusoidal perturbation.

The coupling coefficient is defined as the transfer func-
tion between the input and output variables at the excitation
frequency 0 < ωo < π. According to (18), we can estimate
the coupling coefficient C(ωo) as

C(ωo) = Ĥ(ejωo) =
Φ̂uy(ejωo)
Φ̂uu(ejωo)

. (19)

Based on the knowledge of Φ̂uy(ejωo) and Φ̂uu(ejωo) the
computation of the coupling coefficient is straightforward,
but subject to errors that depend upon (1) the quality of
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Fig. 3. PSD vs. CSD analysis.

the telemetry system that is measuring input and response
variables, and (2) the sampling rate attainable for the target
server. It is important to keep in mind that in the real world
what is computed is the discrete Fourier transform and not
the Fourier transform. This means, based on (16) and (17),
that we know the PSD and CSD only at discrete points
over the interval −π ≤ ω < π. It may happen that none
of these discrete frequency points coincide exactly with the
target excitation frequency ωo. The value of the PSD at ωo

depends on the way we compute the DFT (number of points
or sampling frequencies). To make our analysis independent
of the DFT parameters, we consider (9). When the spectrum
is plotted, the total area under the curve is equal to the
variance of the time series and is independent of the shape
of the curve. A physical interpretation of the PSD function
is that f(ω)dω represents the contribution to variance of
components within the frequency range (ω, ω + dω). A
peak in the spectrum indicates an important contribution
to variance at frequencies in the appropriate region. This
suggests that instead of computing the coupling coefficient
as a ratio of PSDs, we can compute it as a ratio of power
averages around the frequency ωo,

C(ωo) =

∫ ωo+∆ω

ωo−∆ω
Φ̂uy(ejω)dω∫ ωo+∆ω

ωo−∆ω
Φ̂uu(ejω)dω

, (20)

where ∆ω is a multiple of the frequency resolution 2π/N
of the DFT.

As an example of this technique, a sinusoidal perturbation
with period of 15 minutes is generated in one of the input
variables. This sinusoid has a very small amplitude in
comparison with normal variations in user load patterns
(typically < 1% of nominal variations). One or several syn-
thetic client transactions (called the “canary” variables) are
launched to execute typical user transactions (example: file
compression, table lookup, inversion of a small matrix, sort
a linear list). The response times for these canary tests are
recorded to produce continuous time series that reflect QoS
from the end-user perspective. In parallel with the canary
tests, a large suite of system performance, throughput, and
transaction latency variables as well as physical variables
are recorded on a 24*7 basis using a continuous system
telemetry harness, which has been separately developed by
Sun Microsystems for high end UNIX R© servers. Figures
3-a,b show respectively the transaction profile imposed as

perturbation load and the response time of the synthetic
variable as functions of time. Figure 3-c plots the PSD of
the response time of the synthetic client (canary variable)
as a function of frequency. The stochastic noise (chaotic
user load) associated with the canary signal is so high
that the test period of 15 minutes is not discernable in
the univariate PSD. This illustrates that characterization of
typical web-server performance metrics is not amenable to
univariate spectral decomposition calculations via conven-
tional Fourier analysis because the signal-to-noise ratio is
too small to discern the sinusoidal perturbation in PSD
of the response variables. To overcome this limitation of
conventional Fourier analysis methods, we employ the CSD,
a bi-variate diagnostic technique that is highly sensitive,
even to weakly coupled parameters with very poor signal-
to-noise ratios, dramatically and selectively amplifying the
input sinusoid harmonics in response variables such that the
period of the sinusoidal perturbation in the control variable
is readily apparent with excellent peak resolution and low
noise and “side lobe” contamination [7]. In the CSD subplot
in Figure 3-d, a well-defined peak corresponding to the
period of the sinusoid is readily observable, implying a
common periodicity and, hence, a cause-and-effect relation-
ship between the sinusoidal perturbation in the load and the
synthetic client’s response time.

IV. EXPERIMENTAL RESULTS

A. Coupling Coefficients: Load → Physical & Computer
Variables

One subject of our investigation is the relationship of
different variables with respect to the dynamic load on
the server. Figure 4 (left) shows the coupling coefficients
at some specific frequency between both physical and
performance variables and the load. The magnitudes of
these coupling coefficients are a direct measurement of
the correlation of the variables with respect to the load.
By ranking the coupling coefficients from higher to lower,
we can learn which variables are more sensible to load
variations.

Understanding that this ranking can vary with the fre-
quency, it is quite straightforward to extend the approach
outlined above to span multiple, simultaneous excitation
sources. As an example of this multifrequency approach,
Figure 4 (right) shows the coupling coefficient at three
different frequencies. In addition, information coming from



Fig. 4. Left: Coupling coefficients between load and physical and computer variables. Right: Coupling coefficients between load and physical variables.
Comparison between reference (·) and test (+) boards.

two different servers has been superimposed in the figure.
This technique is useful for detection of very subtle faults
in a “test” machine by comparison with a “reference”
machine. The test machine may be a server at a customer’s
datacenter, and the reference machine may be an iden-
tically configured new server in the computing vendor’s
laboratory. By running the same sinusoidal-load profile
script in both the reference and the test machines, and
taking special care of reproducing the same equilibrium
point in both machines, we may expect to have similar
coupling coefficients. Identifying differences in the coupling
coefficients between the reference and the test machine
provides a particularly sensitive method to expose subtle
faults that have heretofore been difficult to root cause and
have contributed to higher warranty and serviceability costs
for computing server vendors. The coupling coefficients can
be displayed in absolute values, as a ratio between the
reference and the test machines, or as a difference between
them in order to facilitate the detection of outliers.

B. Coupling Coefficients: Temperature → System Voltages

We are also interested in studying the cross spectral
correlation between physical variables, for instance, the
coupling coefficients between temperature and voltage in
several board CPU processors. In this experiment, sinu-
soidal temperature oscillations are introduced by use of
a controller script that systematically varies the speeds of
individual fans in an array of fans that are used to cool the
server. This experiment is useful for “teasing out” sources
of very subtle faults that show up as fluctuations in voltage,
but that are accelerated by thermal variations. Anomalous
behavior in the value of a coupling coefficient relating
temperatures to voltage or temperatures to current may
be an indication of a subtle incipient anomaly in system
board components, and may enable service personnel to

identify and remove boards at elevated risk before their
subsequent deterioration may adversely impact a business-
critical datacenter.

C. Sensor Operability Validation

This multifrequency sinusoidal impulsion technique also
proves to be very useful for the purposes of signal validation
and sensor operability validation in complex servers [8].
Modern high-end computer servers may have over 1000
physical transducers measuring distributed temperatures,
voltages, and currents throughout the system. It is very
frequently the case that these inexpensive physical sensors
have shorter Mean Time Between Failure (MTBF) values
than the assets the sensors are supposed to protect. A
common practice in the computing industry is to place
threshold limits on the sensor signals so that, for example, if
a temperature goes too high or a voltage too low, a warning
message is generated or other, automated actions are taken
to protect the system. If any of the sensors should fail
during the life of the server, then the degree of protection
for the system is degraded, as is the ability to proactively
detect anomalous conditions by real time monitoring agents.
The coupling coefficient method developed here provides a
novel means to obtain “instant” sensor operability validation
for all sensors in the server at any time desired. Figure 5
(left) shows the values of the coupling coefficients between
load and the cpu voltages for both the reference and test
machines. Variable 7 in the figure shows a very small value
for the test machine as compared with the reference machine
indicating that the sensor associated with that variable is not
functioning properly. Root cause analysis for the system
board containing Sensor 7 revealed that the sensor was
in a “stuck-at” condition, a failure mode that is extremely
difficult to catch with conventional threshold limits.

Data for the above example was generated by applying



Fig. 5. Left: Coupling coefficients between load and system voltages. The outlier is evidence of a faulty sensor. Comparison between reference (·) and
test (+) boards. Right: Coupling coefficients between temperatures and system voltages. Comparison between reference and test boards. An outlier in
the ratio means a difference between the two boards and evidence of a potential fault.

the multifrequency sinusoidal impulsion method through
system load. As an additional illustration of the diverse
applicability of the techniques introduced herein, we illus-
trate in Figure 5 (right) the dynamic coupling coefficients
between temperatures and the voltages for various system
boards in the test server. In this case the information is
presented as a ratio between the dynamic coupling coeffi-
cients of the reference machine and the test machine. The
outlier in the figure is an indication of a potential fault in the
associated CPU processor on one system board in the test
machine. In this case a root cause analysis revealed that the
sensor itself was functioning properly but there was a fault
in the A/D converter used to digitize the sensor’s output
signal.

V. SUMMARY

Most present methods for qualification testing of enter-
prise computing systems involve putting a maximum ex-
pected load on one or multiple input variables, and seeing if
the system hangs or crashes. While this type of qualification
testing is necessary, we have found that dynamical response
testing can provide an addditional wealth of information that
is useful for designing robust systems that deliver optimal
QoS performance over a large range of system performance.
Nonparametric identification by sinusoidal excitation de-
scribed in this paper can be used to evaluate with a
very high accuracy, dynamic coupling coefficients, transfer
functions, and phase relationships among a wide range of
physical, throughput and performance metrics. Experiments
documented herein with large, multi-processor web servers
have demonstrated that complex systems comprising chaotic
performance dynamics and high stochastic content are not
amenable to univariate spectral decomposition calculations
via conventional Fourier analysis because the Signal/Noise
ratio is too small. The cross-spectrum technique can accu-
rately assess cross correlation and coherence relationships

among multiple, dynamic system parameters, even those
characterized with extremely poor signal to noise ratios. In
addition to establishing whether there is any causal asso-
ciation between input impulse variables (i.e., any types of
typical user transactions) and measured response variables
(temperatures, voltages, currents, as well as QoS metrics),
the techniques introduced here also provide: dynamical
coupling coefficients between input variables and response
variables; and phase shifts between “cause” and “effect”
variables throughout the dynamically executing system. The
coupling coefficient method provides a novel means to
obtain “instant” sensor operability validation for all sensors
in the server at any time desired.

REFERENCES

[1] L. Ljung, System Identification: Theory for the user, 2nd edition,
Prentice-Hall, 1999.

[2] K. C. Gross and L. K. Polley, “Investigation of Nonrecoil
Fission-Product Release Phenomena Using Multifrequency Source-
Perturbation Experiments in EBR-II,” Annals of Nuclear Energy, Vol.
18 (3), 1986, pp. 419-441.

[3] K. C. Gross and R. V. Strain, “Sinusoidal Source Perturbation
Experiments With a Breached Fuel Subassembly in the Experimental
Breeder Reactor II,” Nuclear Technology Journal, Vol. 98, 1992.

[4] Cusset, B. F. and Mellichamp, D. A., “On-line identification of
process dynamics. A multi-frequency response method,” Industrial
and Engineering Chemistry, Process Design and Development, v 14,
n 4, Oct. 1975, p 359-68.

[5] Rees, D., “Automatic testing of dynamic systems using multi-
frequency signals and the discrete Fourier transform,” Proceedings
of the New Developments in Automatic Testing Conference, 30 Nov.-
2 Dec. 1977 , Brighton, UK.

[6] J. L. Hellerstein, “Challenges in Control Engineering of Computing
Systems,” Proceedings of the 2004 American Control Conference,
Boston, MA, June 30 - July 2, 2004.

[7] G. M. Jenkins and D. G. Watts, Spectral Analysis and its Applica-
tions, Emerson-Adams Press, 2000.

[8] K. C. Gross and E. Schuster, “Method and Apparatus for Validating
Sensor Operability in a Computer System,” U.S. Patent Application
filed July 2004 (SUN Microsystems, Inc. case number SUN04-0605-
SPL).


