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Abstract— The cross-field turbulence-driven particle trans-
port in magnetically confined plasmas can be reduced by
adequately shaping the flow profiles. HELCAT (HELicon-
CAThode), a linear magnetized plasma device, uses concentric
ring electrodes to modify the flow profiles by E×B actuation.
As a result, turbulent particle and heat transport can be
mitigated by generating a sheared radial electric field through
the varying ring voltages. Active control of the turbulent fluctu-
ations, including the associated cross-field particle transport, via
manipulation of flow profiles is investigated in this work. Once
a desired radial azimuthal velocity profile, and its associated
level of turbulent fluctuations, are identified, the challenge
of systematically achieving and sustaining it still remains. A
model-based feedback controller is proposed to achieve this
goal even in the presence of external disturbances, model un-
certainties and perturbed initial conditions. A linear-quadratic-
integral (LQI) optimal controller is designed to minimize a
weighted combination of the tracking error and the control
effort. Numerical simulations show the effectiveness of the
proposed controller to regulate the radial azimuthal velocity
profile around a prescribed desired profile. The proposed
control solution has the potential of being used as a systematic
tool to elucidate the physics of laboratory plasmas such as those
achieved in HELCAT.

I. INTRODUCTION

Nowadays, laboratory plasma physics has found applica-
tions in various research areas ranging from solar corona
heating and laboratory astrophysics to plasma nonlinear
dynamics and turbulence control mechanisms. Plasma ex-
periments in this wide range of application areas need a
plasma source that can generate a broad plasma parameter
space with a plasma duration of several miliseconds [1]. For
this purpose, the HELCAT dual-source linear plasma device,
which utilizes both helicon and thermionic cathode sources,
has been created. The helicon plasmas are characterized by
their high density, relatively longer discharge times, and
peaked profiles, whereas the cathode plasmas typically have
lower density, short discharge time, and broader profiles.
Combining the two plasma sources of different character,
HELCAT is capable of addressing various plasma phenom-
ena in the same machine [1].

In this work, the attention is focused on the control of the
turbulence-driven particle transport in HELCAT. The control
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elements in HELCAT are a set of biased concentric ring
electrodes that terminate the plasma column. It has been
shown that by varying the bias of these ring electrodes, it
is possible to manipulate the resulting E × B flow profile
(i.e., the poloidal or azimuthal flow, Vθ) [2]. The radial
derivative of the azimuthal flow (i.e., the flow shear), has
been shown effective in increasing or decreasing the drift
wave turbulence at the plasma edge. Hence, the turbulent
fluctuations may be controlled indirectly in HELCAT by
controlling the azimuthal flow profile evolution, Vθ(r, t).

Both open-loop and closed-loop approaches are possible
for controlling the azimuthal flow in HELCAT. So far, the
authors have focused on an open loop control approach based
on the extremum seeking algorithm, which is shown effective
for both fluctuation mitigation [3] and azimuthal flow regu-
lation [4]. The main advantage of the open-loop approach is
the possibility of utilizing highly complex transport models
since the controller is computed off-line. On the other hand,
the main drawback of the open-loop approach is that it is
highly sensitive to disturbances and modeling uncertainties.

In this paper, a closed-loop approach based on the linear-
quadratic-integral (LQI) optimal control theory is proposed.
The proposed closed-loop controller is capable of coping
with various model uncertainties as well as rejecting a
nonlinear disturbance affecting the azimuthal flow profile,
Vθ(r, t), dynamics. Since the closed-loop control must be
computed on-line, a reduced-order, control-oriented model
is also proposed to replace the highly complex “Trans-
portHelicon” code under development for HELCAT. The
effectiveness of the proposed feedback controller is shown
using numerical simulations.

The organization of this paper is as follows. The partial
differential equation (PDE) model governing the azimuthal
flow profile evolution in HELCAT is briefly introduced
in Section II. This main model is reduced to a finite-
dimensional, control-oriented model in Section III using the
truncated Taylor series expansion method. The design of a
LQI optimal feedback controller for the regulation of the
azimuthal flow profile around a desired target profile is
described in Section IV. In Section V, the proposed controller
is then tested in simulations based on the complete PDE
model. Finally, conclusions and future work are stated in
Section VI.
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Fig. 1. (a) Azimuthal flow diffusivity profiles extracted at different instants. (b) Vθ flow profiles at t = 250 ms for pc = [25, 10, 20,−10, 0,−5].

II. AZIMUTHAL FLOW EVOLUTION MODEL

Based on [5], the radial-temporal evolution of the axially
averaged azimuthal flow Vθ(r, t) is governed by a PDE
model (t ≥ 0, r ∈ [0, 1]) given by

∂Vθ
∂t

= Sθ − µVθ +
1

r

∂

∂r

[
rDVθ

∂Vθ
∂r

]
+αθ

∂

∂r

[
r2ε

∂ε

∂r

∂Er
∂r

](
2

r2 fac

)
︸ ︷︷ ︸

Reynolds stress flow drive (nonlinear)

, (1)

where Sθ(r) is an external azimuthal flow (momentum)
source, DVθ (r, t) is the azimuthal flow diffusivity, ε(r, t)
is the plasma RMS fluctuation level, Er(r, t) is the radial
electric field profile and fac(r) is the Reynolds Stress sup-
pression term. The model constants appearing on the right
hand side of (1) are the flow damping multiplier, µ, and the
coefficient of Reynolds Stress flow generation, αθ.

The control elements are the biased concentric rings in the
actual HELCAT device [4]. Their effect is modeled as local-
ized Gaussian momentum sources in the predictive transport
code (“TransportHelicon”) under development for HELCAT
based on the work in [5]. The effect will be identical to
a source of poloidal E × B flow when diamagnetic flows
are negligible [3]. Hence, the external azimuthal momentum
source from the rings is modeled as

Sθ(r) =

6∑
j=1

pc(j) e
−(rp(j)−r)2

2wpc(j)2 , (2)

where the input array pc ∈ R6×1 denotes the momentum
source strengths, and the constant arrays rp ∈ R6×1 and
wpc ∈ R6×1 represent the radial locations and the radial
widths of the Gaussian momentum sources, respectively.

On the RHS of (1), the diffusivity of the azimuthal
velocity, DVθ (r, t), is modeled as

DVθ (r, t) = 10D0 + 50D0b

√√√√ Te∣∣∣ 1
Te

∂Te
∂r + 1

n
∂n
∂r

∣∣∣ ε2 µprof, (3)

where the collisional particle transport coefficient D0, the
turbulent particle transport coefficient D0b, and the turbulent
transport profile modification µprof are all constants, and
where Te(r, t) and n(r, t) represent the plasma electron tem-
perature and density profiles, respectively. Also, the Reynolds
stress suppression term, fac, is defined as

fac(r)=1+10−6
[

1

(1.000001− r)6
+

1

(0.000001 + r)6

]
. (4)

Note that the highly nonlinear last term appearing on the
RHS of (1) physically models the Reynolds stress flow drive.
Hence, in the absence of the external momentum source
effect (Sθ), the generation of flow is mainly a competition
between the Reynolds stress flow drive (fourth term on the
RHS of (1)) and both magnetic damping (second term on
the RHS of (1)) and momentum diffusion (third term on the
RHS of (1)).

III. CONTROL-ORIENTED MODEL VIA TRUNCATED
TAYLOR SERIES

The nonlinear term associated with the Reynolds stress
flow drive is bounded, i.e.,

|W (r, t)|=
∣∣∣∣αθ ∂∂r

[
r2ε

∂ε

∂r

∂Er
∂r

](
2

r2 fac

)∣∣∣∣≤M. (5)

Hence, from the control point of view, it is considered
as a bounded nonlinear disturbance in this work. The
disturbance-free azimuthal flow response model can then be
represented by the following PDE

∂Vθ
∂t

= Sθ(r)− µVθ +
1

r

∂

∂r

(
rDVθ (r, t)

∂Vθ
∂r

)
, (6)

with the imposed boundary conditions

∂Vθ
∂r

(0, t) = 0 , Vθ(1, t) = 0, (7)

and a predefined initial condition

Vθ(r, 0) = Vθ0(r). (8)



The azimuthal flow diffusivity DVθ in (6) is both time and
space dependent. Fig. 1(a) shows the radial profile of DVθ

at different instants throughout the 250 ms discharge as
extracted from the predictive “TransportHelicon” code for
HELCAT. The profiles in Fig. 1(a) are similar in shape and do
not vary much as time evolves. Hence, the profile at t = 150
ms can be used to approximate DVθ as a time-independent,
radially-varying term, i.e.,

DVθ (r, t) ≈ D̂Vθ (r) = DVθ (r, t)|t=150ms . (9)

Using the approximation (9), the RHS of (6) can be expanded
according to the chain rule as follows

∂Vθ
∂t

=Sθ−µVθ+

(
1

r
D̂Vθ+

∂D̂Vθ

∂r

)
∂Vθ
∂r

+D̂Vθ

∂2Vθ
∂r2

. (10)

To construct a reduced-order model suitable for control
design, the governing PDE (10) is discretized in space using
a truncated Taylor series expansion, which approximates the
spatial derivatives while leaving the time domain continu-
ous [6]. The non-dimensional domain of interest, r ∈ [0, 1],
can be divided into l nodes. Hence, the spacing between
the nodes, h, becomes h = 1/(l − 1). The interior node
region, 2 ≤ i ≤ (l − 1), uses central finite difference spatial
derivative approximations of O(h2). The left boundary node,
i = 1, uses forward finite difference spatial derivative
approximation of O(h2), while the right boundary node,
i = l, is fixed by the Drichlet boundary condition imposed
at r = 1

The infinite-dimensional azimuthal flow model (10) can
then be discretized in space using the aforementioned finite
difference approximations together with the imposed bound-
ary conditions (7). The resulting reduced-order, control-
oriented model can be represented compactly in the standard
linear, time-invariant, state-space form

ẋ(t) = Ax(t) +Bu(t), (11)

where x(t) = [Vθ2(t), Vθ3(t), ..., Vθl−1
(t)]T ∈ Rn×1 is

the state vector containing the values of Vθ(r, t) at the
n = l − 2 interior nodes, the input vector u(t) =
[pc(1), pc(2), .., pc(6)]

T ∈ R6×1 is the array of azimuthal
momentum source strengths, A ∈ Rn×n and B ∈ Rn×6 are
constant system matrices.

The elements of the state matrix A for the interior node
i = 2 are given by

A1,1 =
4

3

[
D̂2

h2
− 1

2h

(
D̂2

h
+
D̂3 − D̂1

2h

)]
−µ−2D̂2

h2
, (12)

A1,2 =
2

3

D̂2

h2
+

4

3

1

2h

(
D̂2

h
+
D̂3 − D̂1

2h

)
, (13)

where D̂i = D̂Vθ (ri) represents the discrete version of the
radially-varying, approximate diffusivity term, (9). Similarly,
the elements of the A matrix for the interior region, 3 ≤ i ≤
(l − 2), are given by

Ai−1,i−2 =
D̂i

h2
− 1

2h

(
D̂i

(i− 1)h
+
D̂i+1 − D̂i−1

2h

)
, (14)

Ai−1,i−1 = −µ− 2
D̂i

h2
, (15)

Ai−1,i =
D̂i

h2
+

1

2h

(
D̂i

(i− 1)h
+
D̂i+1 − D̂i−1

2h

)
. (16)

The elements for the interior node i = l − 1 are given by

An,n−1 =
D̂l−2

h2
− 1

2h

(
D̂l−2

(l − 3)h
+
D̂l−1 − D̂l−3

2h

)
, (17)

An,n = −µ− 2
D̂l−2

h2
. (18)

The remaining entries of the state matrix A are all zero.
Since the values of Vθ at the boundary nodes i = 1 and
i = l are known from the boundary conditions, they are not
considered as the states for the control-oriented model (11).

The input matrix B in (11) models the azimuthal flow
source term, Sθ in (6). Hence, for l radial nodes, (i.e., n =
l−2 states), the elements of B ∈ Rn×6 are obtained directly
from the discrete version of the source model (2) as

Bj,k = exp

{
− [rp(k)− (j − 1)h]

2

2 [wpc(k)]
2

}
, (19)

where j = 1, 2, ..., n and k = 1, 2, ..., 6. The reduced-order,
linear state-space model (11) is generated for l = 21 nodes,
(i.e., n = 19 states) and then compared with the actual
nonlinear PDE (1), which is simulated using the predictive
“TransportHelicon” code for HELCAT. The radial Vθ flow
profiles obtained from the two models are then compared in
Fig. 1(b). Although the state-space model (11) does not take
into account the nonlinear Reynolds stress flow drive term, it
captures the main dynamics of the overall nonlinear Vθ flow
model and hence is useful for feedback control design.

Note that the complete Vθ flow model (1) combines the
disturbance-free model (6) with the Reynolds stress flow
drive, which is considered in this paper as a bounded, non-
linear disturbance acting on the reduced-order model (11).
Hence, the finite-dimensional form of the complete Vθ flow
model (1) can be put into the following state-space model

ẋ(t) = Ax(t) +Bu(t) + w(t), (20)

where the vector w(t) = [W2(t),W3(t), ...,Wl−1(t)]
T ∈

Rn×1 lists the value of the unknown but bounded distur-
bance, W (r, t) at the n = l − 2 interior nodes.

IV. CONTROLLER SYNTHESIS

A. Optimal Tracking Control Problem Statement

In addition to the state equation (20), an output equation
can be defined to provide a linear combination of the states.
The overall plant is then characterized by the following multi
input, multi output (MIMO) system

ẋ(t) = Ax(t) +Bu(t) + w(t), (21)
y(t) = Cx(t), (22)

where C ∈ Rm×n is the output matrix and y(t) ∈ Rm×1
is the output vector. The control objective is to make the



output y(t) track a constant reference z as closely as possible
during the time interval [0, tf ] with minimum control effort.
Hence, for this application, the tracking error, e(t) ∈ Rm×1,
is defined as

e(t) = y(t)− z = Cx(t)− z. (23)

To minimize a weighted combination of the tracking error
and control energy, one can consider the standard, quadratic
performance index

min
u(t)

J =
1

2
eT (tf )P (tf )e(tf )

+
1

2

∫ tf

0

[
eT (t)Qe(t) + u∗T (t)Ru∗(t)

]
dt, (24)

where Q ∈ Rm×m and R ∈ Rm×m are symmetric, positive
definite matrices and P (tf ) ∈ Rm×m. The disturbance-free
plant

ẋ(t) = Ax(t) +Bu(t) (25)
y(t) = Cx(t), (26)

together with equations (23)-(24) define a standard Linear-
Quadratic-Tracking (LQT) optimal control problem, the so-
lution of which is in state-feedback form utilizing the time-
varying Kalman Gain [7]. However, the resulting system will
produce some offset error while tracking the constant refer-
ence. To improve the tracking performance of the closed-loop
system and reject the effect of the disturbance, integral action
should be added to the optimal control law.

B. Linear-Quadratic-Integral (LQI) Optimal Controller

The LQI Optimal Controller is considered here since
it adds the integral action to the standard LQT problem
described in the previous section. The LQI controller is
designed based on the disturbance-free model (25)-(26).
The resulting closed-loop system is insensitive to slowly-
varying, unknown process disturbance (w(t) in (21)) while
tracking a constant reference. To obtain the LQI controller,
the quadratic performance index (24) is modified as

min
v(t)

J =
1

2
eT (tf )P (tf )e(tf )

+
1

2

∫ tf

0

[
eT (t)Qe(t) + v∗T (t)Rv∗(t)

]
dt, (27)

where v(t) is the time derivative of the actual control input
u(t), i.e.,

v(t) =
du(t)

dt
. (28)

Also, the augmented state vector x̃(t) ∈ Rm+n is introduced

x̃(t) =

[
e(t)
ẋ(t)

]
. (29)

Differentiating (23),

ė(t) = Cẋ(t). (30)

Similarly, from (25) and (28),

ẍ(t) = Aẋ(t) +B
du(t)

dt
= Aẋ(t) +Bv(t). (31)

Substituting (30) and (31) into (29), the time derivative of
the augmented state vector, x̃(t), becomes

dx̃(t)

dt
=

d

dt

[
e(t)
ẋ(t)

]
=

[
0 C
0 A

] [
e(t)
ẋ(t)

]
+

[
0
B

]
v(t). (32)

Based on (32), augmented matrices can be defined as

Ã =

[
0m×m Cm×n
0n×m An×n

]
, B̃ =

[
0m×m
Bn×m

]
. (33)

Hence, the state equation for the enlarged m+n dimensional
system (32) can be rewritten as

dx̃(t)

dt
= Ãx̃(t) + B̃v(t). (34)

Note also that the performance index (27) can be expressed
in terms of the enlarged system (34) as

min
v(t)

J =
1

2
x̃T (tf )P̃ (tf )x̃(tf )

+
1

2

∫ tf

0

[
x̃T (t)Q̃x̃(t) + v∗T (t)Rv∗(t)

]
dt, (35)

where the augmented weight matrices are

P̃ (tf ) =

[
Pm×m 0m×n
0n×m 0n×n

]
, Q̃ =

[
Qm×m 0m×n
0n×m 0n×n

]
. (36)

Note that (34) and (35) define a standard Linear-Quadratic-
Regulator (LQR) problem, the solution of which yields a
time-variant state-feedback of the form

v∗(t) = −K(t)x̃(t), (37)

where K(t) ∈ Rm×(m+n) is the Kalman Gain given by

K(t) = R−1B̃T P̃ (t), (38)

and P̃ (t) is the solution of the matrix Ricatti Differential
Equation (RDE)

− ˙̃
P (t) = ÃT P̃ (t)+ P̃ (t)Ã− P̃ (t)B̃R−1B̃T P̃ (t)+ Q̃ (39)

subject to the final condition P̃ (tf ) [7]. If the controllability
and observability conditions are satisfied for (Ã, B̃) and
(Ã, Q̃

1
2 ), respectively, then for every choice of P̃ (tf ), there

exists a constant, stationary matrix P̃+ that satisfies the RDE
(39) in the limit as t → 0. Furthermore, P̃+ is the unique
positive definite solution to the Algebraic Ricatti Equation
(ARE)

0 = ÃT P̃∞ + P̃∞Ã− P̃∞B̃R−1B̃T P̃∞ + Q̃. (40)

In this case, the time-variant Kalman Gain (38) can be
approximated by the constant gain K, which is given by

K = R−1B̃T P̃+

= [KI KP ]

=
[
R−1BT P̃21 R−1BT P̃22

]
, (41)

where P̃21 ∈ Rn×m and P̃22 ∈ Rn×n are partitions of P̃+ ∈
R(m+n)×(m+n) given by

P̃+ =

[
P̃11 P̃12

P̃21 P̃22

]
. (42)
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Fig. 2. Results of the two different reference tracking simulation studies: (a)-(c) and (d)-(f), respectively. (a) & (d): Comparisons of the target and achieved
Vθ(r) flow profiles at tf = 250 ms (b) & (e): Time evolution of the optimal inputs, (c) & (f): Time evolution of the outputs.



Note from (41) that the first element of the K matrix, i.e.,
KI ∈ Rm×m represents the integral gain and the second
element, KP ∈ Rm×n gives the proportional state feedback
gain. Using the constant gain K in (37), the optimal feedback
control law v∗(t) for the enlarged system (34) becomes

v∗(t) = −Kx̃(t) = −[KI KP ]

[
e(t)
ẋ(t)

]
= −KIe(t)−KP ẋ(t) (43)

Integrating (43) from the initial time t = 0 to any time t, the
optimal feedback control law, u∗(t), for the actual system
(21)-(22) can be expressed as

u∗(t) = −KI

∫ t

0

e(τ)dτ −KP [x(t)− x0] , (44)

where x0 = x(t = 0) is the initial condition for the state
vector and the constant control gains are

KI = R−1BT P̃21 KP = R−1BT P̃22. (45)

Finally, substituting the tracking error, e(t), (i.e., equation
(23)) back into (44), the optimal LQI feedback control law
can be expressed in terms of the state and reference as

u∗(t) = −KI

∫ t

0

[Cx(τ)− z] dτ −KP [x(t)− x0] . (46)

Note that the optimal solution (46) yields a PI (proportional
plus integral) control law.

V. SIMULATION STUDY

For l = 21 radial nodes, (i.e., n = 19 states), the
controllability and observability conditions discussed in the
previous section are satisfied when setting m = 6. In this
way, the MIMO model (21)-(22) becomes perfectly square,
having same number of inputs and outputs.

The constant weight matrices of the LQI performance in-
dex (27) are defined as Q = 100 I6×6, and R = 0.001 I6×6,
where I is the identity matrix. The final value of the time
dependent matrix, P (tf ) ∈ R6×6, is taken as zero in this
design. The ARE equation (40) is solved in MATLAB to
obtain the proportional and integral control gains, Kp and
KI . The proposed LQI controller (46) is then implemented
in the predictive transport code, “TransportHelicon”, to simu-
late the complete nonlinear PDE (1) governing the evolution
of the Vθ flow up to 250 ms

Due to controllability constraints, only 6 out of the 19
states can be forced to track a constant reference. Hence, one
can achieve Vθ flow control only at 6 points along the plasma
radius. The left and right columns of Fig. 2 summarize the
results of two simulation studies where different reference
profiles are tracked. The red squares in Fig. 2(a) and Fig. 2(d)
show the 6 radial locations where profile control is achieved.
Given a desired profile shape, one can pick those 6 locations
carefully so that the resulting profile approaches the target

profile as closely as possible. One can force different states
(radial locations) to track the reference by adequately speci-
fying the nonzero entries in the output matrix, C, in (22). As
can be seen from Fig. 2(b) and Fig. 2(e), the 6 optimal inputs
(i.e., the azimuthal momentum source strengths) are settling
down within the first few miliseconds of the discharge,
regulating the outputs around their desired values, as shown
in Fig. 2(c) and Fig. 2(f), respectively.

VI. CONCLUSIONS AND FUTURE WORK

The PDE governing the dynamics of the azimuthal flow
has been first discretized using a truncated Taylor series
expansion to generate a control-oriented, linear model in
cascade with an unknown but bounded disturbance. An LQI
optimal controller has been then designed based on the
disturbance-free model. Numerical simulations show that the
proposed controller is capable of tracking reference profiles
while rejecting the small bounded disturbance, which reflects
the effect of the Reynolds stress flow drive.

No restriction has been imposed so far on the actuators
(momentum source strengths) in the predictive transport
code. One of the future goals is to develop a physical model
converting the bias ring voltages in the HELCAT device to
the azimuthal momentum source strengths in the transport
code. In this way, one could consider the saturation of the
actuators during the control simulations since the voltage
limits are well defined.

A multi-point probe capable of simultaneously measuring
the azimuthal flow at various points along the plasma is
currently under development. This probe will be useful in
determining target azimuthal flow profiles corresponding to
low levels of RMS fluctuations and will also enable the
implementation of the designed LQI controller in the actual
HELCAT device.
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