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Abstract—The potential operation of a tokamak fusion
reactor in a highly-efficient, steady-state mode is directly
related to the achievement of certain types of radial profiles
for the current flowing toroidally in the device. The evolution
in time of the toroidal current profile in tokamaks is
related to the evolution of the poloidal magnetic flux profile,
which is modeled in normalized cylindrical coordinates
using a nonlinear partial differential equation (PDE) usually
referred to as the magnetic diffusion equation. We propose a
robust control scheme to regulate the poloidal magnetic flux
profile in tokamaks in the presence of model uncertainties.
These uncertainties come mainly from the resistivity term
of the magnetic diffusion equation. First we either simulate
the magnetic diffusion equation or carry out experiments
to generate data ensembles, from which we then extract the
most energetic modes to obtain a reduced order model based
on proper orthogonal decomposition (POD) and Galerkin
projection. The obtained reduced-order model corresponds
to a linear state space representation with uncertainty.
Taking advantage of the structure of the state matrices,
the reduced order model is reformulated into a robust
control framework, with the resistivity term as an uncertain
parameter. An H∞ controller is designed to minimize the
regulation/tracking error. Finally, the synthesized model-
based robust controller is tested in simulations.

I. Introduction

Setting up a suitable current profile, which is propor-
tional to the spatial derivative of the poloidal flux profile,
has been demonstrated to be a key condition for one
possible advanced scenario with improved confinement
and possible steady-state operation [1]. One approach to
current profile control is to focus on creating the desired
current profile during the plasma current ramp-up and
early flat-top phases (finite-time optimal control problem)
with the aim of maintaining this target profile during the
subsequent phases of the discharge (regulation problem).

Our previous work includes the investigation of the use
of extremum seeking [2] and nonlinear programming [3]
to achieve open-loop solutions for the optimal control
problem defined during the ramp-up and early flat-top
phases. The time evolutions of the control inputs are
obtained in the interval[0,T ] in order to minimize the
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quadratic error between actual and desired current profiles
at timeT . The work is aimed at saving long trial-and-error
periods of time currently spent by fusion experimentalists
trying to manually adjust the time evolutions of the
actuators to achieve the desired current profile at some
time T within a prespecified window[T1,T2].

These open-loop solutions depend on the plasma resis-
tivity, and therefore on the electron temperature, whose
dynamics is very difficult to be predicted by simple
control-oriented models [4]. In this paper, we take into
account the un-modeled temperature dynamics by consid-
ering the resistivity coefficient in the magnetic diffusion
equation as an uncertainty. After reducing the dimension-
ality of the magnetic diffusion equation by combining
proper orthogonal decomposition (POD) and Galerkin
projection, the model for the poloidal flux is written
within a robust control framework. A robust controller
minimizing the H∞ norm of the sensitivity function of
the closed loop system is then designed to reduce the
tracking/regulation error.

The paper is organized as follows. The dynamic model
for the poloidal flux is introduced in Section II. The
model reduction technique is explained in Section III.
Section IV describes how the model is written within a
robust control framework. The controller is designed and
tested in simulations in Section V. The paper is closed
with the conclusions in Section VI.

II. Current Profile Evolution Model

The evolution of the poloidal flux in normalized cylin-
drical coordinates is given by the magnetic diffusion
equation,
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wheret is the time,ρ̂ = ρ
ρb

is the normalized version of
an arbitrary coordinateρ indexing the magnetic surfaces
(ρb denotes its value at the boundary),ψ is the poloidal
magnetic flux,η is the plasma resistivity,Te is the plasma
electron temperature,Ptot(t) is the total power of the
non-inductive current source,I(t) is the plasma current,
f2(ρ̂), f4(ρ̂), andKη (ρ̂) are spatial functions, andKI is
a constant (see [5] for a detailed model description).

In practice it is very difficult to accurately predict
the time evolution of the electron temperatureTe, and
consequently of the plasma resistivityη(Te), by a model
that is simple enough for control design. Therefore, in this
work we integrateη(Te) into ν(ρ̂,t) and model it as an
uncertainty as explained below.

III. Model Reduction Using POD/Galerkin

We first solve the parabolic PDE system on the grid
Qi j = (ρ̂i,t j), wherei, j are integers with 1≤ i ≤ m;1≤
j ≤ n. The setV = span{ψ1, · · · ,ψn} ⊂ R

m refers to
a data ensemble consisting of the snapshots{ψ j}n

j=1
obtained from the simulation. The goal of the POD
method is to find an orthonormal basis{φk}l

k=1 such that
for some predefined 1≤ l ≤ d, whered = dimV ≤ m, the
reconstruction error for the snapshots is minimized, i.e.,
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subject to

(φi,φ j) = δi j, 1≤ i ≤ l, 1≤ j ≤ i,

where‖ψ‖ =
√

ψT ψ and(·, ·) denotes the inner product
in the spaceL2([0,1]).

Let Λ1 > .. . > Λl > .. . > Λd > 0 denote the posi-
tive eigenvalues of the correlation matrixK, defined as
Ki j = 1

n (ψ j,ψi), for i, j = 1, . . . ,n, and v1, . . . ,vl, . . . ,vd

the associated eigenvectors, whered = rank(K). Then, the
POD basis functions take the form [6]
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where(vk) j is the j-th component of the eigenvectorvk

andY = (ψ1, · · · ,ψn) is the collection of all the snapshots.
Moreover, the error (energy ratio) associated with the
approximation with the firstl POD modes is
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Let V =
{

z|z, dz
dx ∈ L2(ρ̂)

}

, and φ(ρ̂) ∈ V
be a test function, where ρ̂ ∈ [0,1]. Let
VPOD = span{φ1,φ2,φ3,φ4, ...,φl} ⊂ V be a space
spanned by the POD modes obtained from the model
reduction process forψ(ρ̂ ,t). Let

ψ(ρ̂ ,t) ≈ ψ l(ρ̂ ,t) =
l

∑
k=1

βk(t)φk(ρ̂), (10)

whereφk(ρ̂) ∈VPOD, k = 1,2, ..., l. Similarly, letWPOD =
span{ϕ1,ϕ2,ϕ3,ϕ4, ...,ϕn}⊂W be a space spanned by the
POD modes obtained from the model reduction process
for ν(ρ̂ ,t). We write

ν(ρ̂ ,t) ≈ νn(ρ̂ ,t) =
n

∑
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whereΓ = (γ1, ...,γn)
T ∈ R

n is the uncertainty vector, and
ϕi(ρ̂) ∈ WPOD, i = 1,2, ...,n. The vectorΓ is the finite
dimensional approximation ofν(ρ̂ ,t) with respect to the
obtained POD modes. Each elementγi of Γ is a time-
varying uncertainty associated withϕi(ρ̂), andγi = γ0

i (1+
δi) with |δi| < 1, for all i.

We multiply both sides of equation (1) bŷρφ(ρ̂), with
φ(ρ̂) ∈V , and integrate by parts over the spatial domain
[0,1] taking into account (10)–(11) and using the notation

< g1,g2, ...gn >,
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whereF ′ = ∂F
∂ ρ̂ , to obtain a matrix representation for the

reduced order model

M
dx
dt

= −Kx + Pu1(t)+ Qu2(t), (14)

where x(t) = (β1, ...,βl)
T ∈ R

l , M,K ∈ R
l×l , P,Q ∈ R

l .
The vectorx(t) is the finite dimensional approximation
of ψ(ρ̂ ,t) with respect to the obtained POD modes. The
components of the initial state are given by

xi(t0) = xi
0 = (ψ(t0),φi), i = 1, . . . , l, (15)

wherex0 ∈ R
l×1 andφi, for i = 1, . . . , l, are POD modes.

Assuming that all the states are measurable, the state-
space representation of the reduced-order model is given
by

{

ẋ = Ax + Bu

y = Cx + Du
(16)

whereA = −M−1K ∈ R
l×l , B = M−1[P Q] ∈ R

l×2, C = Il

is a l× l identity matrix,D = 0 andu(t) = [u1(t) u2(t)]T .



IV. Model in Robust Control Framework

A system with state space representationA, B, C, D
has a transfer functionG(s) = D+C(sIl −A−1)B, where
l is the number of states in the system. We can write the
transfer function as a linear fractional transformation

G(s) = Fu(
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]

,
1
s
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= D+C
1
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1
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To make the uncertainty in the state-space system (16)
explicit, the matricesK andQ can be rewritten as

K = K0 +
n

∑
i=1

δiKi, Q = Q0 +
n

∑
i=1

δiQi. (18)

where

K0
jk =

n

∑
i=1

γ0
i (< f4φ ′

k,φ
′
j,ϕi > + < f4φ ′

k,φ j,ϕ ′
i >),(19)

Ki
jk = γ0

i (< f4φ ′
k,φ

′
j,ϕi > + < f4φ ′

k,φ j,ϕ ′
i >), (20)

Q0
j =

n

∑
i=1

γ0
i f4(1)k3φ j(1)ϕi(1), (21)

Qi
j = γ0

i f4(1)k3φ j(1)ϕi(1). (22)

Then, we define the matrixMa as a general affine state-
space uncertainty
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with A0 = −M−1K0 ∈ R
l×l , Ai = −M−1Ki ∈ R

l×l B0 =
M−1[P Q0] ∈ R

l×2, Bi = M−1[0 Qi], C0 = Il , Ci = 0 and
D0 = Di = 0 for all i = 1,2, ...,n.
This uncertainty can be formulated into a linear fractional
transformation by achieving the smallest number of re-
peated blocks using the method outlined in [7]. With this
purpose, the matrixJi is formed as

Ji =

[
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]

∈ R
2l×(l+2). (24)

Using singular value decomposition and grouping terms,
the matrixJi can be expressed as
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whereA∗ denotes the complex conjugate transpose ofA.
Then, the uncertainty can be written as
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Fig. 1: Overall feedback system.

whereqi = 1 for all i = 1,2, ...,n in this case. Therefore,
the matrixMa can be written as

Ma = M11+ M12∆M21, (27)

where
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This is equal to the lower linear fractional transformation

Ma = Fl(M,∆) (28)

with
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]

.

Finally, the transfer functionG(s) of the uncertain state-
space model is written as

G(s) =Fu(Fl(M,△),
1
s

Il) = Fl(Fu(M,
1
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=Fl(P
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The goal is to design a controller that can robustly
track the optimal open-loop trajectories of magnetic flux
ψ and meet special performance requirements. Therefore,
let us consider the referencer and disturbanced as inputs,
and a weighted version of the tracking error as the output
z = Wpe, whereWp is a weight chosen by the designer.
The overall feedback system is shown in Fig. 1. Then, the
generalized planP∗ from [u∆ d r u]T ∈R

13×1 to [y∆ z e]T ∈
R

12×1 is (see Fig. 2)
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Fig. 2: Robust control framework for augmented plantP∗.
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Fig. 3: System response without any control.

V. Controller Synthesis and Simulations

The control objective is to track the optimal open-loop
control referencesr. The optimization problem is to find
an H∞ controllerK to minimize the cost function

‖WpS‖∞, (30)

where S = (1 + KG)−1 and the weight unctionWp is
defined as

Wp =
(s/M1/2

p + ω∗
B)2

(s+ ω∗
BA∗1/2)2

, (31)

with M = 1, A∗ = 10−4 andω∗
B = 106 [8]. The uncertain

parameterδi ranges from−1 to 1. This is the range of
values for which the system should be stabilized so that
the robust controller can be considered a suitable design.

For the simulation study presented in this section we
assume that that there is no external disturbance, i.e.
d = 0. The reference signalsr are step functions and
the time-varying uncertain parametersδi’s are sinusoidal
functions of 20πHz. The frequency of the sinusoidal
functions affects the transient response (rise time, settling
time and overshoot) but does no effect stability. Only four
POD modes are used for model reduction. Figures 3 and 4
compare the weighted tracking errors for the uncontrolled
and controlled (H∞ controllerK) systems respectively.
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Fig. 4: System response with theH∞ controllerK.

VI. Conclusions

In this paper, we consider a control-oriented dynamic
model describing the evolution of the poloidal flux during
the inductive phase of the tokamak discharge. Using the
POD/Garlekin technique, we reformulate this PDE model
into a low dimensional ODE model that preserves the
dominant dynamics of the original parabolic PDE. The re-
sistivity term is modeled as an uncertainty and the model
is rewritten within a robust control framework∆−P∗−K.
A robust controller is synthesized to minimize theH∞
norm of a weighted version of the sensitivity transfer
function relatingz and r, and therefore to minimize the
weighted tracking error. The simulation study shows that
the proposed robust controller stabilizes the system and
improves the tracking performance when compared to the
uncontrolled case.
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