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Abstract— The accuracy of first-principles predictive models
for the evolution of plasma profiles is sometimes limited by the
lack of understanding of the plasma transport phenomena. It
is possible then to develop approximate transport models for
the prediction of the plasma dynamics which are consistent
with the available diagnostic data. This data-driven approach,
usually referred to as phenomenological modeling, arises as
an alternative to the more classical theory-driven approach.
In this work we propose a stochastic filtering approach based
on an extended Kalman filter to provide real-time estimates
of poorly known or totally unknown transport coefficients. We
first assume that plasma dynamics can be governed by tractable
models obtained by first principles. However, the transport
parameters are considered unknown and to-be-estimated. These
estimates will be based solely on input-output diagnostic data
and limited understanding of the transport physics. Numerical
methods (e.g., finite differences) can be used to discretize the
PDE models both in space and time to obtain finite-dimensional
discrete-time state-space representations. The system states
and to-be-estimated parameters are then combined into an
augmented state vector. The resulting nonlinear state-space
model is used for the design of an extended Kalman filter that
provides real-time estimations not only of the system states but
also of the unknown transport coefficients. Simulation results
demonstrate the effectiveness of the proposed method for a
benchmark transport model in cylindrical coordinates.

I. INTRODUCTION

Mathematical modeling of plasma transport phenomena
with modest complexity but capturing dominant dynamics is
critical for plasma control design. Transport theories (classi-
cal, neoclassical and anomalous) produce, under necessary
assumptions, strongly nonlinear models based on partial
differential equations (PDEs). However, the complexity of
these models often makes them not useful for control design
since it is very challenging, if not impossible, to synthesize
compact and reliable control strategies based on these com-
plicated mathematical models. As an alternative, data-driven
modeling techniques, including system identification [1] and
data assimilations [2], have the potential to obtain practical,
low-complexity, dynamic models for the control of plasmas
systems.

Data-driven modeling techniques have been successfully
used in the past to model plasma transport dynamics for
active control design in nuclear fusion reactors. System
identification using input and output (I/O) diagnostic data has
been used to model the current profile dynamics in ASDEX
Upgrade [3]. In the JET tokamak [4], a two-time-scale linear
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system is used to describe the dynamics of the magnetic and
kinetic profiles around certain quasi-steady state trajectories,
where system matrices can be identified from the experimen-
tal or simulation data using system identification algorithms
in [1]. In the L-mode discharges of the JT-60U tokamak [5],
diffusive and non-diffusive coefficients of the momentum
transport equation of the toroidal rotation profile dynamics
are estimated from transient data obtained by modulating the
momentum source.

First-principles modeling of the plasma profile dynamics
usually results in multiple-input-multiple-output (MIMO)
infinite-dimensional transport models. Using the method of
averaging over magnetic surfaces, the transport model can be
formulated into one dimensional (1D) PDEs with respect to
a variable indexing the magnetic surfaces [6], [7]. System
identification often generates dynamic models fitting the
input/output diagnostic data but does not take into account
the physical structure of the transport model obtained by first
principles. In this case the states of the identified models do
not necessarily represent physical variables. In this work, we
propose instead to use the tractable 1D PDE structure [7] of
the first-principle model to estimate its transport coefficients
using experimental data. Various numerical methods (such as
the finite difference method [8]) can be used to obtain fully
spatial-temporal discretized models in terms of given spatial
nodes and sampling rates. For finite-dimensional discrete-
time systems, stochastic filters (e.g., the Kalman filter) can be
used to estimate the system states based on the input/output
measurements. In order to be able to also estimate system
parameters, such as the transport coefficients, it is possible
to define an augmented state vector which includes both the
original system states and these to-be-estimated parameters.
The overall discrete-time model becomes nonlinear but sto-
chastic filters (e.g., the extended Kalman filter) can still be
used to estimate the augmented state vector.

The paper is organized as follows. We introduce a linear
parabolic PDE system in Section II that retains the general
structure of plasma transport models under the circular cylin-
drical approximation. Then, an explicit numerical discretiza-
tion scheme [8] is derived based on the finite difference
method over a given spatial–temporal grid. The stability
of the numerical scheme is also discussed in this section.
In Section III, we summarize the extended Kalman filter
theory used in this work for the estimation of both system
states and transport parameters. In Section IV, we test the
performance of the proposed method in simulations. We
close the paper by stating conclusions and potential research
topics in Section V.



II. 1D PARABOLIC SYSTEM AND DISCRETE SCHEMES

Without loss generality, we consider the following par-
abolic system [9], [7]

∂x

∂t
(ξ, t) =

1
ξ

∂

∂ξ

[
ξϑ

∂x(ξ, t)
∂ξ

+ V x(ξ, t)
]

+ SIN(ξ, t), (1)

∂x(0, t)
∂ξ

= 0,
∂x(1, t)

∂ξ
= SBC(t), x(ξ, tI) = x0(ξ), (2)

where x(ξ, t) represent a general plasma profile with respect
to the normalized spatial coordinate ξ ∈ [0, 1] and time t ∈
[tI, tF]. The parameters ϑ(ξ) and V (ξ) are unknown and to-
be-estimated based on observational data. Interior sources
and boundary controls are denoted by SIN(ξ, t) and SBC(t),
respectively. The initial distribution is denoted by x0(ξ). In
order to simplify the presentation of the stochastic filtering
approach for parameter estimation of 1D plasma transport
models, in this work we assume without loss of generality
that ϑ is a constant, V (ξ) ≡ 0, and the interior source can
be represented as SIN(ξ, t) = bIN(ξ)sIN(t).

In the rest of this section, we derive a discrete representa-
tion of the continuous PDE system (1)–(2) using an explicit
scheme over the following spatial-temporal grid division:

0 = ξ0 < ξ1 < . . . < ξi < . . . < ξM = 1, (3)
t0 = tI < t1 < . . . < tj < . . . < tN = tF, (4)

where ξi = ih and tj = t0 + jT . The profile function is
then rewritten as xj

i = x(ξi, tj). The boundary conditions
are discretized as
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BC. (6)

Over the interior nodes ξ1, . . . , ξM−1, we obtain the follow-
ing discrete schemes,
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We substitute (5)–(6) into (7) for i = 1 and i = M − 1,
respectively. Then, we obtain the following discrete system:
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The system measurement is defined by

y(ξ, t) =
1
ξ

∂x(ξ, t)
∂ξ

, (9)

which can be discretized as
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(10)
We discuss now the stability of the discretized model with

respect to the iteration index j (which is critical for effective
estimation) because textbooks (e.g., [10]) on stability of
finite difference schemes usually do not include boundary
conditions in the analysis. Additionally, the cylindrical geom-
etry makes the stability analysis more complicated than in
Euclidean coordinates. The propagation matrix of the discrete
scheme (8) is denoted by Φ = ωA + I , where ω = Tϑ

h2 , I
is an identity matrix and A is the coefficient matrix of the
discretization of the spatial derivatives in (8). By introducing
a vector xj as the collection of the unknowns xj

1, . . . , x
j
M−1,

we can rewrite the discrete scheme (8) as xj+1 = Φxj +Sj ,
where Sj represents the sources terms. Based on stability
theory of linear systems [10], the numerical scheme is
numerically stable if and only if all the eigenvalues of the
propagation matrix Φ satisfy |λ| < 1, where λ ∈ C solves
the characteristic polynomial equation det (λI − Φ) = 0. We
note that the matrix (λI − Φ) takes a tridiagonal form

λI − Φ =


α1 γ1

β2 α2 γ2

. . . . . . . . .
βM−1 αM−1

 .

We carry out the LU decomposition, λI − Φ = LU , where
L and U are defined by

L=


l1
β2 l2

. . .
βM−1 lM−1

 , U=


1 µ1

1 µ2

. . .
1

 ,

with l1 = α1, µi = γi/li, (i = 1, . . . ,M − 2), li = αi −
βiµi−1, (i = 2, . . . ,M − 1). Therefore, the λ–polynomial is
determined by

p(λ, ω) = det(λI − Φ) = det L = ΠM−1
i=1 li.

By using algebraic tools (e.g., the discrete Routh–Hurwitz
theorem or the Jury stability criterion [10]), we can obtain a
stability condition for the discrete scheme in terms of the
discretization parameter ω = Tϑ

h2 . Since the condition is
expressed in terms of the unknown ϑ, we must make the
time step T small enough to satisfy the stability condition
for the whole possible range of ϑ.
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Fig. 1. Interior and boundary excitation signals defined by (20)–(21).
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Fig. 2. Spatial-temporal evolution of the PDE system (1)–(2) with the
excitation signals (20)–(21).

III. THE EXTENDED KALMAN FILTER

By noting that Sj
IN,i = bIN,is

j
IN, we can define

uj =
[

sj
IN Sj

BC

]T
. (11)

By introducing the augmented state and system output

zj =
[

xj
1 xj

2 . . . xj
M−1 ϑj

]T
, (12)

yj =
[

yj
1 yj

2 . . . yj
M−1

]T
, (13)

we can rewrite the discretized system (8)–(10) as the follow-
ing nonlinear state space representation

zj+1 = f(zj ,uj) + wj , yj+1 = h(zj+1,uj) + vj+1,

where f and h are the state and measurement mappings
defined by the finite difference schemes in (8)–(10) and the
equation for ϑ given by ϑj+1 = ϑj . The disturbance input w
and the measurement noise v are assumed to be white, zero–
mean Gaussian random sequences, i.e., wj ∼ N(0, Qj) and
vj ∼ N(0, Rj), which satisfy the following properties

E
[
wj1 · vj2

]
= 0, ∀j1, j2, (14)

E
[
vj1 · vj2

]
= 0, E

[
wj1 ·wj2

]
= 0, ∀j1 6= j2, (15)

E
[
wj ·wj

]
= Qj , E

[
vj · vj

]
= Rj , (16)
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Fig. 3. Computational and estimated states (red solid v.s. blue dot lines).
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Fig. 4. Parameter estimation based on the extended Kalman filter.

where Qj and Rj are covariance matrices.
In the rest of this section we give a brief introduction of

the extended Kalman filter which is the nonlinear version of
the well-known Kalman filter in estimation theory. In the
following equations, we use ẑj+1|j to represent the state
propagation before the measurements are considered,

ẑj+1|j = f(ẑj|j ,uj), (17)

whereˆrepresents the estimated value. We then compute the
Jacobian matrices with respect to the current state ẑj|j , the
propagation state ẑj+1|j and the control input uj ,

F j =
∂f(z,u)

∂z

∣∣∣∣
ẑj|j ,uj

, Hj+1 =
∂h(z,u)

∂z

∣∣∣∣
ẑj+1|j ,uj

.

(18)
We are able to improve the propagation result in (17) by
taking into account the measurement yj+1,

ẑj+1|j+1 = ẑj+1|j + Kj+1
[
yj+1 − h(zj+1|j ,uj)

]
, (19)



where the gain Kj+1 is determined as

P j+1|j = F jP j|j (
F j

)T
+ Qj ,

Kj+1 = P j+1|j (
Hj+1

)T
[
Hj+1P j+1|j (

Hj+1
)T
+Rj+1

]−1

,

P j+1|j+1 =
(
I −Kj+1Hj+1

)
P j+1|j .

More details on the extended Kalman filter can be found
in [2].

IV. A NUMERICAL EXAMPLE

A. Numerical simulation of the PDE system - dense grid

We first solve the PDE system (1)–(2) on a dense grid
based on an implicit finite difference scheme. We consider a
constant parameter ϑ = 0.12 in the simulation. The interior
actuation function is given by bin(ξ) = 1− ξ4, (0 ≤ ξ ≤ 1)
and the excitation signals (shown in Fig. 1) are chosen as

sin(t) =
1
3

sin(5t) +
1
2

cos
[
10t + cos(5t2)

]
, (20)

SBC(t) =
3
2

sin
(

1
5
t2

)
. (21)

The spatial–temporal domain is given by Ω = {(ξ, t) : 0 ≤
ξ ≤ 1, 0 ≤ t ≤ 6}. To start the simulation, the initial
distribution is assumed as x(ξ, 0) = x0(ξ) = 2 − 4

5ξ2.
The simulation of system (1)–(2) is carried out over the
grid nodes (3)–(4) with time step T = Td = 0.05(s) and
spatial step h = hd = 0.025, where we use the subscript
d to denote a dense grid division. The spatial–temporal
evolution obtained from the numerical simulation is shown
in Fig. 2 where the evolutionary trajectories corresponding
to the values at the four finite-difference node points used for
the extended Kalman filter are marked with red solid lines
on the 3D surface.

B. The extended Kalman filter - sparse grid

We now let h = hs = 0.2 and T = Ts = 0.05, where
the subscript s denotes an sparse grid division. We use an
explicit difference scheme to obtain a fourth order discrete
system based on (8). The measurements defined by (9) are
also taken at the same spatial nodes that are used to obtain the
state propagation scheme (8). An initial guess is needed to
start the estimation of both the system states and the transport
parameter ϑ. A good guess of the initial states is important
to obtain a correct estimation. If the initial estimates of
the states are far from the actual values, the iteration of
the extended Kalman filter can diverge soon after several
propagation steps due to the linearization with respect to the
estimated states. However, a relatively fair initial guess of the
to-be-estimated parameter within the stability region of the
finite difference scheme is good enough to robustly generate
an accurate parameter estimation. The initial guesses for
the states are perturbed values of the initial distribution
x(ξ, 0) = x0(ξ) = 2− 4

5ξ2 at the four difference node points.
The initial guess for the parameter is given by ϑ̂ = 0.23.
With the given initial settings, we use the extended Kalman
filter to obtain both state and parameter estimations which

are shown in Fig. 3 and Fig. 4, respectively. The parameter
estimation can converge to the real value rapidly.

V. CONCLUSIONS

We consider a parameter estimation problem for a bench-
mark model in plasma transport, which is governed by a 1D
parabolic PDE. The explicit scheme is then used to obtain
a finite-dimensional discrete-time approximation based on
the finite-difference discretization of the PDE system over
a given spatial-temporal grid division. By including the
unknown transport coefficient as an augmented state variable,
we are able to reformulate the discrete-time linear system
into an augmented nonlinear system. Then, the extended
Kalman filtering technique is used to obtain real time esti-
mations of both the system state and the transport coefficient
based on the measurements.

In this work, we only consider the case where the to-
be-estimated parameter is a constant in space. However, by
parameterizing spatially varying parameters via a number
of constants parameters distributed in space, it is possible
to formulate the estimation problems of spatially distributed
parameters within the framework discussed in this work. In
order to avoid reducing T excessively in order to satisfy
the stability condition for the proposed explicit discretiza-
tion scheme, implicit unconditionally stable discretization
schemes must be developed to obtain robust parameter
estimations.

This work presents an alternative to the first-principles ap-
proach to the modeling of the plasma dynamics and transport
phenomena by assimilating the experimental observations
into transport PDE models with modest complexity. Since the
assimilation of experimental data is carried out in real time,
this method can be effectively integrated into a feedback
plasma control system.
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