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Abstract

The matching problem for a low energy transport system
is approached from a control theoretical viewpoint. The
beam dynamics are modeled using the KV (Kapchinskij-
Vladimirskij) envelope equations. Multi-Parameter Ex-
tremum Seeking, a real-time non-model based optimization
technique, is considered in this work for the lens tuning in
the beam matching system. Numerical simulations illus-
trate the effectiveness of this approach.

INTRODUCTION

In this work we approach the beam matching problem,
where the beam must be matched to the acceptance ellipse
of an accelerating structure or transport section. Specifi-
cally we consider a fixed geometry matching section con-
sisting of four quadrupole lenses. The objective of this sys-
tem is to take any arbitrary initial beam state and “match”
it to the acceptance ellipse of the following section, i.e.,
any given initial state xini to a prescribed final state xfin,
through the control of the lens strengths in the transport
(matching) channel. A review of beam transport includ-
ing matching was recently presented in [1]. We assume
the matching channel to be composed of discrete beam-
line elements, such as lenses, and drifts. These elements
are cascade along the beam axis, considered the z axis, to
form the matching channel. This configuration is depicted
in Figure 1. The input to the lenses, labeled θ1, θ2, θ3,
and θ4 in the figure, represent the focusing strength of the
lenses and are the parameters of the channel that may be
varied. We consider the usage of extremum seeking as op-
timization technique. The performance of this technique
in terms of computational demand, globality, and ability to
deal with cost functions full of local minima, is reported.

The paper is organized as follows. In Section 2 the opti-
mization problem is defined. Section 3 introduces the fun-
daments of extremum seeking. The results of the simula-
tion study are presented in Section 4. The paper is closed
by a summary in Section 5.

PROBLEM DEFINITION

Assuming a continuous, elliptically-symmetric particle
beam, we model its dynamics using the KV coupled-
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Figure 1: Matching Channel

Figure 2: Focusing function

envelope equations [2]. Let the z coordinate represent the
position along the design trajectory, and thus the xy plane
is the transverse plane for the particle beam. At each z lo-
cation, let X(z) and Y (z) represent the semi-axes of the
beam envelope in the x and y planes, respectively. The KV
equations then appear as

X ′′ − θ(z)X − 2K

X + Y
− ε2X

X3
= 0 (1)

Y ′′ + θ(z)Y − 2K

X + Y
− ε2Y

Y 3
= 0 (2)

where the prime indicates differentiation with respect to
z, that varies from 0 to L. The function θ(z) is the focus-
ing (control) function. K is the beam perveance, εX and
εY are the effective emittances of the beam in the x and y
planes, respectively. The focusing function θ(z), shown in
Figure 2, can be written as

θ(z) =




κθ1 z ∈ [Ld, Ld + Lq]
κθ2 z ∈ [2Ld + Lq, 2Ld + 2Lq]
κθ3 z ∈ [3Ld + 2Lq, 3Ld + 3Lq]
κθ4 z ∈ [4Ld + 3Lq, 4Ld + 4Lq]
0 otherwise

(3)

where κ is a constant, Ld is the drift length, and Lq is the
quadropole lens length. The matching channel parameters
θ1, θ2, θ3, and θ4 must satisfy the following constraints:
0 ≤ θ1, θ3 ≤ 50 and −50 ≤ θ2, θ4 ≤ 0.

We are given initial conditions for the beam at z = 0,
the transport system’s entrance location. These conditions
characterize the beam coming from the preceding section
of the transport or accelerator system.They may be trans-
lated into initial conditions for the beam envelopes in the
x plane (Xini, X ′

ini) and in the y plane (Yini, Y
′
ini). In



Figure 3: Extremum seeking control scheme

matching systems we are also given desired final condi-
tions, or target conditions, at z = L, the exit location of
the matching channel. We denote this target conditions as
(Xtar,X

′
tar) and (Ytar, Y

′
tar). They are prescribed by the

acceptance requirements of the next section of the transport
or accelerator system.

Denoting x = [X X ′ Y Y ′]T , we define xini =
x(0) = [Xini X ′

ini Yini Y ′
ini]

T and xfin =

x(L) =
[
Xfin X ′

fin Yfin Y ′
fin

]T

. In addition,

we define a target value for x denoted as xtar =
[Xtar X ′

tar Ytar Y ′
tar]

T , and desired beam profiles
(beam trajectories) for X(z) and Y (z) denoted as Xdes(z)
and Ydes(z) respectively. Given xini, xtar, Xdes(z) and
Ydes(z), we use an extremum seeking procedure to mini-
mize the cost function J given by

J ={k1J1 + k2J2 + k3J3} 1
2 (4)

J1=KX (Xfinal − Xtarget)
2 + KY (Yfinal − Ytarget)

2 (5)

J2=KdX

(
X ′

final − X ′
target

)2
+KdY

(
Y ′

final − Y ′
target

)2
(6)

J3=

∫ L

0

w(z)
[
KiX (X(z) − Xdes(z))2

+KiY (Y (z) − Ydes(z))2
]
dz, (7)

where k1, k2, k3, KX , KY , KdX , KdY , KiX , and KiY are
weight constants, and wz is an integral weight function.

EXTREMUM SEEKING

Extremum seeking control, a popular tool in control ap-
plications in the 1940-50’s, has seen a resurgence in popu-
larity as a real time optimization tool in different fields of
engineering [3]. Extremum seeking is applicable in situa-
tions where there is a nonlinearity in the control problem,
and the nonlinearity has a local minimum or a maximum.
The parameter space can be multivariable. In this paper
we use extremum seeking for iterative optimization of θ to
make xfin as close as we can to xtar. For each new value
of θ we run the KV equations and obtain xfin. We point
out that, since xtar is given arbitrarily, xfin is obtained via
solving a system of nonlinear differential equations, and
the lens input applied through θ is highly constrained in its
waveform, there may not exist θ such that perfect match-
ing is achieved, xfin = xtar, thus we try to obtain the best
possible approximate matching. We change θ after each

beam “run.” Thus, we employ the discrete time variant [4]
of extremum seeking. The implementation is depicted in
Figure 3, where q denotes the variable of the Z-transform.
The high-pass filter is designed as 0 < h < 1, and the
modulation frequency ω is selected such that ω = απ,
0 < |α| < 1, and α is rational. The static nonlinear block
J(θ) corresponds to one run of the KV system. The objec-
tive is to minimize J . If J has a global minimum its value
is denoted by J∗ and its argument by θ∗.

In this case we are dealing with a multi-parameter ex-
tremum seeking procedure, where the variables are written
as

θ(k) =




θ1(k)
θ2(k)
θ3(k)
θ4(k)


 , θ̂(k) =




θ̂1(k)

θ̂2(k)

θ̂3(k)

θ̂4(k)


 , ξ(k) =




ξ1(k)
ξ2(k)
ξ3(k)
ξ4(k)


 .

The extremum seeking constants a and b shown in Figure 3
are diagonal matrices of dimension 4. In addition, cos(ωk)
and cos(ωk − φ) denote column vectors of dimension 4,
where each one of the components has a specific frequency
ωi and phase φi, for i = 1 . . . 4. In each iteration of the
extremum seeking procedure, θ(k) is used to compute the
focusing function θ(z) according to (3), which is in turn
fed into the KV equations (1) and (2). Given xini, the KV
equations are integrated to obtain X(z), Y (z), and xfin.
The output of the nonlinear static map, J(k) = J(θ(k)),
is then obtained by evaluating (4) and used to compute
θ(k + 1) according to the extremum seeking procedure in
Figure 3, or written equivalently as

Jf (k) = −hJf (k − 1) + J(k) − J(k − 1) (8)

ξ(k) = Jf (k)b cos(ωk − φ) (9)

θ̂(k + 1) = θ̂(k) − γξ(k) (10)

θ(k + 1) = θ̂(k + 1) + a cos(ω(k + 1)). (11)

SIMULATION RESULTS

The physical parameters used in the simulations pre-
sented in this section are K = 2.7932 × 10−6, εX =
6 × 10−6, εY = 6 × 10−6, κ = 2.6689, Ld = 0.1488,
Lq = 0.0610, and L = 0.988. In addition, the ex-
tremum seeking parameters are h = 0.4, ω1 = ωbase × π,
ω2 = ω2

base × π, ω3 = ω3
base × π, ω4 = ω4

base × π, where
ωbase = 0.95, γ1 = 0.1, γ2 = 0.1M(ω1)

M(ω2)
, γ3 = 0.1M(ω1)

M(ω3)
,

γ4 = 0.1M(ω1)
M(ω4)

, and φ1 = −φ(ω1), φ2 = −φ(ω2),
φ3 = −φ(ω3), φ4 = −φ(ω4), where M(ω) and φ(ω) are
respectively the magnitude and phase of the frequency re-
sponse of the high-pass filter.

For all the simulations, the initial condition of the beam
at the entrance of the channel is

xini =




0.00147377
−0.00601315
0.00201395
0.00768638


 , xtar =




0.00109372
−0.00786479
0.00328979
0.01172626


 . (12)

Denoting θ = [θ1 θ2 θ3 θ4]
T , the initial condition for

the extremum seeking parameters in all the simulations is
equal to θ(0) = [25,−25, 25,−25]T .
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Figure 4: cost function (a), θ evolution (b), beam profile for θfinal (c)

In this case we take Xdes(z) and Ydes(z) as a combina-
tion of two linear functions as shown in Figure 4-c (dotted
line). The slope of the last section of the desired beam pro-
file coincides with the target conditions for the derivatives
in order to facilitate their matching. The use of only one
linear function, connecting Xini and Yini, with Xtar and
Ytar respectively, would be in conflict with the target con-
ditions for the derivatives. Figures 4 shows the extremum
seeking results when the cost function parameters are given
by

KX = 2000, KY = 2000, KdX = 1, KdY = 1,
KiX = KiY = 50, k1 = 1, k2 = 1, k3 = 1.

(13)

The integral weight w(z) is equal to 0 for 0 ≤ z < 0.2,
2 for 0.2 ≤ z < 0.8, 50 for 0.8 ≤ z < 0.9, and 100 for
0.9 ≤ z < L. We try not only to match the final section of
the beam profile but also to reduce excursions in the mid-
dle section. In this case the amplitudes of the sinusoidal
excitations are varied according to the following law:
a1,2,3,4 = [2.25, 2, 1.75, 1.5] if −35dB ≤ J
a1,2,3,4 = [0.25, 0.75, 0.5, 0.5] if −45dB ≤ J < −35dB
a1,2,3,4 = [0.1, 0.25, 0.1, 0.1] if −46dB ≤ J < −45dB
a1,2,3,4 = [0.05, 0.05, 0.05, 0.05] if −50dB ≤ J < −46dB
a1,2,3,4 = [0.01, 0.01, 0.025, 0.025] if J < −50dB

Comparing xfin (below) with xtar, we can note that we
do have an acceptable matching of the target conditions. In
this case we are converging to θ̂fin (below).

xfin =




0.00109266
−0.00734280
0.00327968
0.01063013


, θ̂fin =




34.855771
−30.710796
14.736266
−30.669087


. (14)

The time evolution of θ1, θ2, θ3, θ4 in Figure 4-b shows
that a steady value is reached after 150 iterations. This can
be also noted from Figure 4-a, where the cost function does
reach a steady value after 150 iterations, showing a very
fast convergence. Figure 4-c shows the beam profile for
θ̂fin. Not only the matching of the target conditions is ac-
ceptable, but also the matching of the desired profile. This
is explained by how the cost function was defined.

When k3 = 0, the global minimum of the functional J
corresponds to θ∗ = [ 38 −38 38 −38 ]T , giving a
perfect matching for the target conditions. In this case, we
achieve very similar final conditions reducing at the same
time the excursion of X(z) and Y (z). It is interesting to

note how different is the value of θ̂fin (above) from the
global minimum θ∗ and at the same time how acceptable
is the matching of the target conditions. This is a sample
of how complex the functional map J(θ) is. An in-depth
analysis of the functional map shows that we are dealing
with a spiky cost function with numerous local minima.

CONCLUSIONS

A multi-parameter extremum seeking procedure has
been implemented, and successfully tested in simulations,
for the tuning of the lens strengths in a 4-lens matching
channel. Although the scheme shows a very fast conver-
gence, considering that we are tuning simultaneously four
parameters, it is not clear at this point if the scheme can
be used for real-time optimization. However, based on the
promising results obtained in the simulation study, it is an-
ticipated that the scheme can play an important role in an
off-line design process. A rigorous performance compari-
son with other methods previously used is still pending and
will be part of our future work in the short term.

We must highlight at this point the capability of the
scheme of avoiding getting stuck in local minima with rela-
tively large values of the cost function. The modification of
the amplitude of the sinusoidal excitation as a function of
the value of the cost function is key in this achievement.
This suggests the possibility of designing an extremum
seeking scheme that automatically adapts their gains or si-
nusoidal amplitudes to permanently seek a lower value of
the cost function. This potential scheme would be very use-
ful for applications with spiky cost function maps as the
one considered in this work.
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