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Abstract— The System Dynamics Characterization and Con-
trols Laboratory of Sun Microsystems has developed novel
continuous system telemetry technology for proactive fault
monitoring and “electronic prognostics” capabilities for all
types of executing computing platforms. Central to the goal
of designing and evaluating prognostic and control systems for
enterprise computing platforms is first the ability to simulate
telemetric signals and computer system degradation events
with real-time models in an interactive computer environ-
ment. This paper describes the development and implemen-
tation of a Telemetric Parameter Simulation System (TPSS)
that employs Fourier-based decomposition and reconstruction
methodology with the capability to efficiently decompose any
signals into their deterministic and stochastic components,
then reconstruct new, simulated signals that possess exactly the
same statistical noise idiosyncrasies as the original telemetry
variables. The TPSS has become an indispensable tool in
Sun’s ongoing development of innovative diagnostic techniques
for telemetry operability surveillance and other electronic
prognostic applications in enterprise in Sun’s present and
future computer platforms.

I. I NTRODUCTION

A System Dynamics Characterization and Control
(SDCC) laboratory has been established as part of Sun
Microsystems’ Physical Sciences Research Center in San
Diego, Ca. As part of this effort, new advanced simulation
capabilities are being built upon an innovative distributed-
processing computing system that is dedicated to at least
four areas of SDCC support for enhancing the reliability,
availability, serviceability (i.e. RAS), and quality-of-service
(QoS) for present and future computing platforms: devel-
opment of real-time server telemetry signal simulation for
design, RAS, and QoS analysis; development and testing
of server feedback-and-control algorithms; validation of
control schemes prepared by universities and collaborating
vendor partners for testing with the new server prototype
platforms; and development and testing of advanced pattern
recognition techniques to annunciate the incipience or onset
of degradation of sensors and server components, field-
replaceable-units (FRUs), and integrated systems. Central to
the goal of designing and evaluating control and information
systems for prototype server platforms is first the ability
to simulate them with real-time models in an interactive,
computer laboratory environment. In support of the ongoing
development of the SDCC Laboratory, an ancillary effort
has been undertaken to develop a Telemetry-Parameter
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Simulation System (TPSS). The TPSS has been designed
to meet two key functional requirements:

(1) To be able to analyze any server telemetry signal,
decompose that signal into its deterministic and sto-
chastic components, then reconstruct a new, simulated
signal that possesses exactly the same statistical noise
idiosyncrasies (e.g. non- gaussian skewness, kurtosis,
autocorrelation structure) as the actual server teleme-
try signal.

(2) To be able to filter out the principal serially-
correlated, deterministic components from xerver
telemetry variables so that the remaining stochastic
signal (called the residual function) can be analyzed
with signal validation tools that are designed for
signals drawn from independent random distributions.

Functional requirement (1) addresses a capability that is
lacking in current, state-of-the art system telemetry simula-
tion systems: the ability to simulate and explore the effects
of sensor degradation events. As is, conventional server
modeling codes for modeling thermal and power dynamics
in prototype server architectures are capable of providing
high-fidelity prototype simulations that can enable users
to demonstrate server behavior during a wide range of
transient execution modes that might include load and
memory dynamics, fan-speed changes, and Dynamic Re-
configuration (DR) events for CPUs and/or system boards.
These modeling systems cannot, however, enable users to
explore questions regarding expected autonomic or human-
operator responses to sensor-degradation events. It is the
objective of the investigation undertaken here to develop
a systematic methodology for high-fidelity simulation of
telemetric signals from dynamically executing computer
servers. It is important at the outset to note that there are
over 1000 physical sensors in today’s high end servers.
These are hardware transducers that measure such physical
variables as temperature, voltage, current, and vibration
levels throughout the system. Unfortunately, throughout the
computing industry it is often the case that the physical
sensors have a shorter mean-time-between-failure (MTBF)
than the server assets that the sensors are supposed to pro-
tect. Sensor degradation events can either cause premature
outages for servers (if the sensors drift out of calibration and
trip a threshold); or, worse, the sensors can fail inside their
appropriate operating range. This failure mode can result in
more catastrophic failures of systems because the protection
capability of the sensor is diminished or lost.



The TPSS, when fully integrated with conventional sys-
tem modeling codes, will ensure that every parameter has
exactly the same statistical structure, both deterministically
and stochastically, as its corresponding “real” physical
variable in the server. Such an integrated system will then
provide the capability to simulate any postulated degrada-
tion modes, subtle or catastrophic, for sensors in any part of
the server. This capability takes on an elevated importance
in applications where the focus shifts from simulation to
actual feedback-and-control applications, where a control
mechanism acting on an erroneous input signal due to a
degraded sensor could give rise to improper and possibly
catastrophic control actions.

Functional requirement (2) above makes the TPSS a
useful adjunct to expert systems that have been developed
separately at Sun for signal validation and sensor operability
surveillance applications. These expert systems employ a
sensitive pattern-recognition technique, the sequential prob-
ability ratio test (SPRT), for early annunciation of subtle
anomalies in noisy process variables. The standard SPRT
test [1], [2] was designed to accommodate independently
distributed, gaussian noise. Many physical telemetry vari-
ables from servers, however, are contaminated with noise
that is either serially correlated or nongaussian (or both).
These statistical anomalies, when present in stochastic
processes monitored by a SPRT, can give rise to higher
false-alarm and missed-alarm probabilities than specified in
the design of the SPRT. To obviate these problems, we have
demonstrate as part of the project reported here that we can
use the TPSS to spectrally filter the predominant serial-
correlated components from digitized telemetry variables,
then apply the SPRT to the stochastic residual function.
The reduction in empirical false alarm probabilities for the
SPRT results from an improvement in the whiteness of the
residual function, as demonstrated previously for similar
applications to signals from commercial nuclear reactors
[3].

The development of the Fourier-based spectral decompo-
sition algorithms employed in the first stage of the TPSS
calculations is presented in detail in Section II of this
report. The four principal modules comprising the TPSS
software package developed during this investigation are
presented in Section III. In Section IV, we present actual
results of applying the TPSS to a variety of measured
telemetry signals from executing enterprise-class servers.
For each signal used in the TPSS demonstration, a variety
of frequency-domain and time-domain analyses are applied
to the original and synthesized signals. These analyses have
been selected to enable us to make a realistic quantitative
assessment of the effectiveness and utility of the TPSS
from the standpoints of functional requirements (1) and (2)
above. The analyses employed include: the Fisher Kappa
test for whiteness, the D’Agostino Pearson moment test for
normality, the Kolmogorov-Smirnov test for normality, and
a run-of-signs test, which is a non-parametric test to assess
serial correlation [4].

II. M ETHODSUSED

A continuous system telemetry harness (CSTH) has been
developed and patented by Sun Microsystems for a new
approach to high-sensitivity proactive fault monitoring of
computer servers and all of the active electronic compo-
nents comprising those servers [5]. The CSTH collects
time series signals relating to the health of dynamically
executing components, subsystems and integrated systems.
These time series provide quantitative metrics associated
with physical variables (distributed temperatures, voltages,
and currents throughout the system), performance variables
(parameters having to do with throughput, transaction la-
tencies, queue lengths, load on the cpu and memories, IO
traffic, bus saturation metrics, FIFO overflow statistics, etc.),
and various quality-of-service (QOS) metrics. The CSTH
signals are continuously archived to an offline circular
file (i.e. the “Black Box Flight Recorder”), and are also
processed in real time using advanced pattern recognition
for proactive anomaly detection. The CSTH coupled with
advanced pattern recognition techniques provides sensitive
early detection of a variety of mechanisms that are known to
cause downtime in enterprise datacenters, including: Envi-
ronmental issues (thermal anomalies, air-flow restrictions,
failed fans); Software aging phenomena (memory leaks,
resource contention); Degraded/failed sensors; Degradation
of power supplies; and “inferential sensing” capability
(wherein a failed sensor is replaced with a highly accurate
analytical estimate). This new CSTH innovation coupled
with advanced pattern recognition is helping to increase
component reliability margins and system availability goals
while reducing (through improved root cause analysis)
costly sources of “no trouble found” events that have
become a warranty-cost issue in computing (and other)
industries.

CSTH time-series signals,Xt, contain a serially corre-
lated component,Yt, and some random contribution,et, so
that Xt = Yt + et. A standard Fourier series describesXt

as

Xt =
a0

2
+

N/2∑

m−1

(am cos(ωmt) + bm sin(ωmt)) (1)

where a0/2 is the mean value of the series,am and bm

are the Fourier coefficients corresponding to the Fourier
frequencyωm, andN is the total number of observations.
Then Yt represents the Fourier modes with the largest
amplitude oscillations, andet is a discrete function of
random residuals. The following numerical approximation
to the Frourier transform is useful in determining the Fourier
coefficientsam and bm [6]. Let Xj be the value ofXt at
tj , the jth time increment. Then assuming2π periodicity
and lettingωm = 2πm/N , the approximation to the Fourier
transform yields:

am =
2
N
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xj cos(ωmj) (2)



bm =
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xj sin(ωmj) (3)

for 0 < m < N/2. Furthermore, the power spectral density
(psd), of the signal is given by

lm = N
a2

m + b2
m

2
(4)

To keep the signal bandwidth as narrow as possible with-
out distorting the psd, no spectral windows or smoothing
shall be used in the subsequent development. The Fourier
modes corresponding to the eight highestlm provide the
amplitudes and frequencies contained inYt. The highest
eight lm modes were found to give an accurate reconstruc-
tion of Yt while reducing most of the serial correlation for
the telemetry variables under investigation here (see Section
III). By no means was an exhaustive study performed to
identify the optimum number of harmonics to use in the
reconstruction. However, increasing stepwise the number of
harmonics used from four to eight was found to significantly
reduce the serial correlation. Increasing the number of
harmonics used from eight to ten introduces nonphysical
high frequency oscillations inYt due to in error computing
the psd of a noisy signal.

The reconstruction ofYt uses the general form of (1),
where the coefficients and frequencies are those with the
eight highest psd values. This reconstruction generates a
curve with the same mean and essentially the same de-
terministic behavior asXt. EvaluatingYt and the residual
function et = Xt − Yt using various statistical tests to
determine whiteness and normality demonstrates the effec-
tiveness of the method. The test employed herein to quantify
whiteness is the Fisher Kappa test [7]. The D’Agostino
PearsonK2 test [8] and the Kolmogorov-Smirnov test [9]
are used to quantitatively evaluate deviation from normality.

The Fisher Kappa white noise test examines the peri-
odogram of the signals by attempting to reveal periodicities
in the data. The periodogram of a white noise process
should contain no outstanding peaks or dips. Therefore, the
Fisher Kappa test compares the largest psd value with the
mean psd value to determine if the time series under study
can be considered a white noise process. To accept the null
hypothesis that the data is random, the kappa statistic must
be lower than its corresponding critical value.

The D’Agostino PearsonK2 test for normality looks at
the third and fourth moments, called the skew and kurtosis
respectively, of the signals. The skew determines the degree
to which the data lean asymmetrically to one side of the
bell curve. The kurtosis reveals whether the bell is too
narrow or wide to be considered a true gaussian process.
The sample skew and kurtosis are calculated and compared
to the estimated skew and kurtosis of gaussian data with
the same mean and variance. For a gaussian process, the
skew should be zero and the kurtosis should be three. The
resulting K2 test statistic is chi-square with two degrees
of freedom. Values ofK2 exceeding the critical value

call for a rejection of the null hypothesis that the data
are gaussian. Besides determining normality, this test also
reveals characteristics of nonnormality from the skew and
kurtosis.

The Kolmogorov-Smirnov tesf for normality is similar to
the Fisher Kappa test for whiteness except the evaluation
takes place here in the time domain as opposed to the spec-
tral domain. The signals are compared to the corresponding
value for a normal process, and the difference function
evaluated. The test statistic must be lower than the critical
value to accept the null hypothesis that the data are normal.

The run-of-signs test [4], used on the raw signal and
residual function, is a simple nonparametric tests which
checks for autocorrelation. It is based on the hypothesis
that positive autocorrelation results in long sequences, or
runs, of residuals of the same sign. A run is a sequence
of residuals, all of the same sign, with the two residuals
immediately surrounding the run having the opposite sign.
The run-of-signs test determines the total number of runs
in the residual function and compares that to the number
of positive residuals (N1), the number of negative residuals
(N2), and the total number of residuals. An uncorrelated
residual function will have the valueN1 close toN2, and
the number of runs will be approximately(2N1N2/(N1 +
N2)) + 1.

Finally, adding a random componentet to the Fourier
reconstructionYt completes the reconstruction of the sig-
nals. Ideally, we would like for the original signalXt

and the reconstructed signalX ′
t to have the same mean

and variance, or identical first and second moments. To
accomplish this, the variance ofXt, Yt, and the residual
function et are compared. SinceYt is a deterministic func-
tion comprised of sines and cosines, andet is a randomly
generated function, the two are independent. This assures
additivity of the variances: Var(Yt)+Var(et) = Var(Yt+et).
Therefore, generating a Gaussian random functionet with
Var(et) = Var(Xt)−Var(Yt) and mean 0, then adding it to
Yt creates a signalXt which agrees with the original signal
through the first and second moments.

III. M ATLAB PROGRAMS FORDECOMPOSITION AND

RECONSTRUCTION OFSERVER TELEMETRY SIGNALS

Matlab version 13 was used in writing all of the code
for TPSS. The Matlab Digital Signal Processing (DSP)
toolbox was used for frequency domain decomposition, and
performing the Fischer Kappa white noise test. The Matlab
Statistics toolbox was invoked to perform the Kolmogorov-
Smirnov test for normality. The Fisher-Kappa test was
adapted from [7] and coded in Matlab language.

The TPSS code has been modularized using the Matlab
programming language to maximize flexibility and to facili-
tate the extensibility, maintenance, and configuration control
for the completed system. The Matlab routine FOURREC
performs that spectral decomposition of the raw input sig-
nals and creates the composite N-harmonic Fourier curve. A
second routine called ADDRAN was designed to efficiently



Fig. 1. Core voltage without load

superimpose pseudorandom noise components and generate
univariate statistics for the raw and reconstructed signals.
The customized Matlab routine NRMTST performs the tesf
for normality on the raw signals as well as the residual data.
Finally, the RUNS program conducts a run-of-signs test [4]
designed to quantify the degree of autocorrelation in the
residual data.

IV. RESULTS FORSPECIFICSERVER TELEMETRY

VARIABLES

Various digitized telemetry signals from executing
servers, such as various voltages, currents, and tempera-
tures for CPUs, memory modules, and power supplies, are
extracted from Sun’s Continuous System Telemetry Harness
(CSTH) to demonstrate the power and utility of the TPSS
core methodology. All statistical tests have been performed
for both the raw data and the residual functions. The 95
per cent confidence limit is used for all critical values.



Fig. 2. Core voltage with load

Results at the four stages of the reconstruction are plotted.
Periodograms and histograms of the raw data and the
residual functions are also plotted. In all cases, signals have
been measured from a Sun StarCat F15K server comprising
18 system boards, 72 CPU modules, and 0.5 TeraBytes of
main memory. The telemetry data have been digitized at a
30-msec sampling rate using 16,384 observations for each
data set.

Results for a core voltage signal are shown in Figure 1.
The core voltage is the voltage supplied to each CPU
processor on a system board. There are 4 CPUs modules

per system board. Figure 1 depicts just one of 72 core
voltage signals analyzed. The core voltage signal shown
was collected during a time period when the system was
idle, i.e. running no user loads. The top subplot shows
4000 observations of the raw voltage signal. The second
subplot shows the Fourier composit curve as generated with
8 fourier modes. (N=8 was found to adequately capture
the dynamical components of the signals analyzed in this
study). The third time-series subplot shows the residual
function, obtained by subtracting the Fourier composite



Fig. 3. Current

curve from the raw time series. The final reconstructed
signal, obtained by adding pseudorandom noise to the
Fourier curve, is shown in the 4th subplot.

The primary value of the technique introduced in this
paper lies in the fact that the reconstructed signal shown
in the 4th subplot possesses a statistically indistinguishable
structure to that for the original raw signal. This means that
after one learns the Fourier parameters and the moments
of the residual function from a relatively brief experiment,

it then becomes possible to synthesize millions of hours
of data that can then be used in validation studies of
expert system algorithms that are being designed by Sun
for proactive fault monitoring applications.

The right side of Figure 1 shows histograms of the raw
signal and residual data for the core voltage signal. The first
histogram subplot is computed from the original raw signal
and is superimposed against a pure Gaussian curve with
the same mean and variance. The second subplot shows



the histogram of the core voltage signal against a Gaussian
curve with the same mean and variance. The improvement
in normality (closeness to the Gaussian histogram) is quite
apparent in a visual comparison of the top and bottom
subplots in the right side of Figure 1. Similar results are
shown for a core voltage signal measured during operation
with a typical user load profile in Figure 2. Note that
even though the raw signal contains a greater degree of
dynamical behavior (because of the time-varying load on
the system), the TPSS technique nevertheless synthesizes
the raw signal with high fidelity. Finally, Figure 3 illustrates
application of TPSS to one of very many current signals
from the enterprise server used for these investigations.
In addition to voltage and current signals, the technique
outlined herein has been applied to temperatures, vibration
levels, and a wide range of performance metrics that the
CSTH extracts from the Solaris operating system.

It should be noted here that selective spectral filtering
by the TPSS, which we have designed to reduce the
consequences of serial correlation in our sequential testing
schemes, does not in itself guarantee that the degree of non-
normality in the data will also be reduced. Fortuitiously,
for over 90 per cent of the signals we have investigated as
part of this investigation, the reduction in serial correlation
is accompanied by a reduction in the absolute value of
the skewness for the residual function. Moreover, in cases
where there is not a reduction in skewness, it can generally
be observed that the skewness is very small to begin with.
Finally, it has been shown in a separate investigation [3]
that nonnormality is much less of a problem, in terms
of affecting SPRT misidentification probabilities, than is
nonwhiteness.

V. CONCLUSIONS

A telemetry parameter simulation system (TPSS) has
been built and is now being used as an adjunct to the System
Dynamics Characterization and Controls Laboratory at Sun
Microsystems. The TPSS has the capability to process any
stochastic telemetry variable from enterprise-class computer
servers and then (1) generate a synthesized signal that
has exactly the same statistical and correlation structure as
the actual computer telemetry signal; and (2) accomplish
spectral filtering of telemetry variables so that SPRT-based
modules may be applied for Electronic Prognostic applica-
tions, even when the underlying physical processes inter-
nal to the server are contaminated with serially-correlated
components. Capability (1) enables the TPSS to be used
for high-fidelity telemetry signal simulation, providing rich
functionality that has not heretofore existed in the computer-
server signal simulation arena. Two of the TPSS’s most
important early uses will be in novel server feedback-and-
control strategies for dynamical provisioning of cooling
and/or load; and for system-upset investigations to explore
a wide range of scenarios that can arise involving signal
faults generated from degraded sensors.

Capability (2) of the TPSS, frequency-domain filtering,
makes the TPSS an indespensible tool in Sun’s ongoing
development of innovative expert systems for signal valida-
tion, sensor operability validation, and real-time predictive
failure annunciation (i.e. Electronic Prognostics) applica-
tions that require high-reliability, high-sensitivity parameter
surveillance. Spectral filtering of process variables con-
taminated with serial correlation will assure that SPRT
modules achieve pre-specified false-alarm and missed-alarm
probabilities, thereby rendering the overall expert system
amenable to formal quantitative reliability analysis method-
ology. This is an indespensible requriement if Electronic
Prognostic systems are to be deployed in business-critical,
mission-critical, and especially life-critical applications.
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