Abstract Submitted for the DPP16 Meeting of The American Physical Society

Stability of Elevated- q_{min} Steady-State Scenarios on DIII-D¹ C.T. HOLCOMB, B. VICTOR, LLNL, J.R. FERRON, T.C. LUCE, General Atomics, E. SCHUSTER, U. Lehigh — Limits to high performance steady-state operation with $q_{min}>1.4$ and $\beta_N \leq 3.5$ are identified and explained. Various β_N and q-profile histories were produced while testing feedback control of these profiles. Ten pulses had no core MHD at $\beta_N=3.4-3.5$, with $q_{min}=1.4-1.8$, and $q_{95}=5-5.8$. These have predicted ideal-wall kink β_N limits between 4 and 5. One pulse had an n=1 tearing mode (TM) at $\beta_N=3.5$ with no clear trigger. Five pulses developed n=1 TMs when $\beta_N=2$, $q_{min}=2$, and $q_{95}=4.7$. Stability calculations for these latter cases will be shown. In seven other shots, additional NBI power from sources with more normal injection was used, and these had off-axis fishbone (OAFB) modes at $\beta_N=3.5$. These sources produce more large-radius trapped ions whose precession can drive OAFB. Preliminary analysis suggests a threshold power or voltage exists. In some cases OAFB appear to trigger n=1 TMs. These studies seek to clarify the operational limits of a steady-state scenario for next step devices.

¹Supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-09ER55064.

C.T. Holcomb LLNL

Date submitted: 11 Jul 2016

Electronic form version 1.4