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A direct numerical simulation (DNS) code has been developed, based on a hybrid Fourier
pseudospectral-finite difference discretization scheme and the fractional step technique, to simu-
late a two-dimensional (2D) magnetohydrodynamic (MHD) channel flow, also known as Hartmann
flow. This flow is characterized by an electrically conducting, incompressible fluid moving between
parallel plates in the presence of an externally imposed transverse magnetic field. The system is
described by the MHD equations, a combination of the Navier-Stokes equation and the Magnetic
Induction equation, which is derived from the Maxwell equations. The laminarization effect of
the imposed magnetic field is studied numerically. In addition, a nonlinear, Lyapunov-based,
boundary feedback control law designed for mixing enhancement is numerically tested. Pressure
sensors, magnetic field sensors, and micro-jets embedded into the walls of the flow domain are
considered in this work to implement a feedback control law that maximizes a measure related
to mixing (which incorporates stretching and folding of material elements), and minimizes the
control and sensing efforts.

I. Introduction

While control of flows has been an active area for several years now, up until now active feedback flow control
developments have had little impact on electrically conducting fluids moving in electromagnetic fields. Active
feedback control in electrically conducting flows, implemented through micro-electro-mechanical or micro-electro-
magnetic actuators and sensors, can be used to achieve optimally the desired level of stability (when suppression
of turbulence is desired) or instability (when enhancement of mixing is desired). As a result, a small amount of
active control applied to magnetohydrodynamic (MHD) flows, magnetogasdynamic (MGD) flows, and plasma flows
can dramatically change their equilibrium profiles and stability (turbulence fluctuations) properties. These changes
influence heat transfer, hydrodynamic drag, pressure drop, and the required pumping power for driving the fluid.

Prior work in the area of active control of electrically-conducting-fluid flows focuses mainly on electro-magneto-
hydro-dynamic (EMHD) flow control for hydrodynamic drag reduction, through turbulence control, in weak elec-
trically conducting fluids such as saltwater. Traditionally two types of actuator designs have been used: one type
generates a Lorentz field parallel to the wall in the streamwise direction, while the other type generates a Lorentz
field normal to the wall in the spanwise direction. EMHD flow control has been dominated by strategies that either
permanently activate the actuators or pulse them at arbitrary frequencies. However, it has been show that feedback
control schemes, making use of “ideal” sensors, can improve the efficiency, by reducing control power, for both
streamwise1 and spanwise2,3 approaches. From a model-based-control point of view, it is worth to mention that
feedback controllers for drag reduction have been previously designed using distributed control techniques based on
linearization and model reduction.4,5

In this paper, we consider a Hartmann flow, an electrically conducting fluid moving between parallel plates
through an imposed transverse magnetic field. The fluid is considered incompressible and Newtonian (constant
viscosity). When an electrically conducting fluid moves in the presence of a transverse magnetic field, it produces
and electrical field due to charge separation and subsequently an electric current. The interaction between this
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created electric current and the imposed magnetic field originates a body force, called the Lorentz force, which acts
on the fluid itself. Since this force acts in the opposite direction of the fluid motion, it is necessary to increase the
pressure drop to maintain the mean velocity of the flow and a considerable increase of power is required to pump
the fluid. In addition, this force tends to suppress turbulence and laminarize the flow, reducing the heat transfer
rate as consequence. The interaction between a magnetic field and an electrically-conducting-fluid flow can have a
positive or a negative impact on mixing and heat transfer depending on the application.

The high temperature reached at the surface of a vehicle flying at hypersonic speed causes the ionization of
the surrounding air molecules and the consequent formation of a plasma. It is natural then to try to exploit
the plasma capability of interacting with an electromagnetic field. By imposing a suitable magnetic field, it is
possible to modify the aerodynamic forces and heat transfer rates in a convenient way. Since the Lorentz force
tends to oppose fluid motion across magnetic field lines, a transverse magnetic field applied to the plasma layer
would tend to increase the drag, braking the vehicle in atmospheric entry, and to reduce heat transfer and skin
friction by slowing and laminarizing the flow near the surface of the body. The use of this MHD principle would
have been an alternative to the use of heat shield, the conventional approach to thermal protection for the last
40 years. But these ideas could not be put in practice because of the large, heavy magnets required to provide a
magnetic field strong enough to affect the thermally ionized reentry flow characterized by a relatively low electrical
conductivity. This subject has been revived by the appearance of superconducting magnets. It seems that the
light-weight magnets, together with the utilization of artificial ionization, would give some new consideration to
the usage of electromagnetic control techniques. Present work studies numerically the influence of the imposed
magnetic field in different flows.6–10 However, the feedback of some information of the system, such as variations
in the current density, induced magnetic field or pressure, has not been considered to modulate the intensity of the
imposed magnetic field. In this case, active feedback control can be used to modulate intelligently small magnets
(weak magnetic field) instead of using large, heavy, unmodulated large magnets (strong magnetic field) to achieve
the same degree of laminarization and heat transfer mitigation, minimizing the control power at the same time.

In cooling systems, since the Lorentz force acts in the opposite direction of the fluid motion, it is necessary to
increase the pressure drop to maintain the mean velocity of the flow. In addition, an increase of power is required to
pump the liquid through the ducts forming the cooling system. The heat transfer decrease due to the laminarization
of the flow prevents present cooling systems (liquid metals (bismuth, gallium, lithium, sodium-potassium, and some
of their alloys ), electrically conducting liquid salts (Flibe),11 and nanofluids12 (tiny spherical copper particles of
a few nanometers are added to conventional fuids)) from producing the heat transfer improvements which might
be expected based on the much higher thermal conductivity of the coolant. In this case, active control can be
used to enhance turbulence, mixing, and therefore heat transfer. As a result, a small amount of active control can
greatly influence the heat transfer characteristics of the cooling system or the external power needed to sustain its
operation. The possible usage of liquid metals or electrically conducting liquid salts (Flibe) as self-cooled blankets
in magnetic confinement fusion reactors has been in consideration for the past 30 years. The main function of the
coolant is the absorption of energy from the neutron flux and the transfer of heat to an external energy conversion
system. In addition, if a breeder liquid metal such as liquid-lithium is considered, the blanket can also carry out
the breeding of tritium, which is part of the fuel used by the reactor. The liquid metal flow is affected by the strong
magnetic field (5-10 Tesla) used to confine the plasma inside the reactor. The interaction between the flow and
the strong imposed magnetic field generates very intense magnetohydrodynamic (MHD) effects. Among the most
important effects, we find the increase of pressure drop and the decrease of heat transfer rate. A good review of
the present state of research in the field can be found in previous work.11,13 It is possible to note that although
extensive experimental and numerical work is going on, the use of feedback to increase the heat transfer rate without
increasing the pressure drop has not yet been explored. The usage of liquid-metal-based cooling systems is also
currently under consideration in the computer industry. The need for cooling solutions for semiconductor devices
has never been greater than today. With higher power dissipation due to higher speed processors, the demand for
advanced cooling solutions will continue growing. The thermal and physical properties of liquid metals put them
in advantage over other single phase liquid solutions considered for computing systems. The high boiling point and
thermal conductivity make the liquid metal ideal for heat removal and dissipation. Although supercomputers under
development nowadays will produce huge amount of heat to be removed, this is not the only market for liquid-metal
cooling systems. The development of new generation of portable and desktop computer is also restricted by heat
removal limitations. A new technology that enables increase of heat transfer and decrease of pumping power will
have a tremendous economical impact by reducing the power consumption of the cooling system. In addition, it
will allow computing systems to keep growing in computational power and speed.
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In this work, we focus on the latter application. We use feedback boundary control to improve mixing by
enhancing the instability of the Hartmann flow profile. From the point of view of sensors and actuators we follow
the ideas introduced in previous work.14–17 Micro-jets, pressure sensors, and magnetic field sensors embedded into
the walls of the flow domain are used to implement the feedback control law. The mathematical foundation of
the proposed control law has been previously introduced,18 but it is also included in this paper for completeness.
This paper focuses on the analysis of the effectiveness of the proposed optimal controller based on numerical
simulations. With this purpose, a direct numerical simulation (DNS) code has been developed, based on a hybrid
Fourier pseudospectral-finite difference discretization scheme and the fractional step technique, to simulate a full
magnetohydrodynamic (MHD) channel flow, also known as Hartmann flow.

The paper is organized as follow. Section II introduces the governing equations of our system. The fully
developed solution is presented in Section III and the perturbation equations are introduced in Section IV. The
Lyapunov analysis for the designed boundary control law is presented in Section V. In Section VI the numerical
method used to simulate the MHD channel flow is briefly described. Results from simulation studies are presented
in Section VII. Section VIII closes the paper stating the conclusions and the identified future work.

II. Governing Equations

Let us consider the flow of an incompressible, conducting fluid between parallel plates where a magnetic field
Bo = Boŷ perpendicular to the channel axis is externally applied. In addition, let us assume the presence of a
uniform pressure gradient in the −x̂ direction. Figure 1 illustrates the configuration. This flow was first investigated
experimentally and theoretically by Hartmann.19

Figure 1. Flow between parallel plates in the presence of a transverse magnetic field (Hartmann flow).

The governing equations for the stated problem are the transport equation of linear momentum

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇P + ρν∇2v + f + j × B, (1)

and the transport equation of magnetic induction

∂B
∂t

+ (v · ∇)B =
1

µσ
∇2B + (B · ∇)v. (2)

The flow velocity is denoted by v, the magnetic field by B and the current density by j, while P denotes the
pressure, ρ the fluid mass density, ν the kinematic viscosity, µ the magnetic permeability and σ the electrical
conductivity. The volumetric forces of non-electromagnetic origin is represented by f and the j×B term represents
the Lorentz forces. The Lorentz forces couple the mechanical and electrodynamic states of the system and act
in planes perpendicular to both current density and magnetic field vectors. Coulomb forces qE, where q is the
electrical charge and E the electrical field, are negligible in comparison to the Lorentz forces.

The magnetic induction equation is derived in Appendix A from Ohm’s law

j = σ(E + v × B), (3)
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Faraday’s law
∂B
∂t

= −∇× E, (4)

Ampere’s law
µj = ∇× B, (5)

and the fact that B and v are solenoidal

∇ · B = 0, (6)
∇ · v = 0. (7)

In this work we consider the 2D Hartmann flow. Figure 2 shows the geometrical arrangement, where −L ≤ y ≤ L,
−∞ < x < ∞. The imposed magnetic field Bo is perpendicular to both planes. In this case we can write
v = v(x, y, t) = U(x, y, t)x̂ + V (x, y, t)ŷ, B = B(x, y, t) = Bu(x, y, t)x̂ + Bv(x, y, t)ŷ and P = P (x, y, t).

Figure 2. 2D Hartmann flow.

III. Equilibrium Solution

For channels with constant cross section, as the one depicted in Figure 2, a fully developed equilibrium flow is
established. In this case, the flow velocity v̄ = Ū(y)x̂ has only one component, which depends on the coordinate
y (the upper bar denotes equilibrium variables). The magnetic field is decomposed into two contributions, one
due to the external imposed magnetic field and the other caused by the magnetic field induced by the flow B̄ =
Bo + b̄ = Boŷ+ b̄. Substituting this expression for the equilibrium magnetic field B̄ into equation (2), and forcing
the temporal derivative to zero, shows that the only component of the induced magnetic field is b̄ = b̄(y)x̂. The
induction equation reduces then to

0 = µσBo
dŪ

dy
+

d2b̄

dy2
. (8)

Using Ampere’s law (5) it is possible to write the current density j, and consequently the Lorentz force j × B, in
terms of b̄. Then the momentum equation can be written as

0 = −dP̄

dx
+

Bo

µ

db̄

dy
+ ρν

d2Ū

dy2
. (9)

We consider viscous fluids with no slip at the fluid-wall interface Γ. Therefore the hydrodynamic boundary
condition is

v̄ = 0 at Γ, (10)

which means that all the velocity components vanish at the wall. For walls with finite electrical conductivity σw,
magnetic permeability µw and normal n, the condition that the tangential component of the electrical field is
continuos across the wall interface can be expressed in terms of b̄ as20

∂b̄

∂n
− 1

c
b̄ = 0 at Γ, (11)

with the wall conductance ratio defined as c = µwσwtw

µσL where the wall thickness tw is often small compared to the
dimension of the cross section L. Two limiting cases can be considered

b̄ = 0 at Γ as c → 0 (perfectly insulating walls)
∂b̄
∂n = 0 at Γ as c → ∞ (perfectly conducting walls).

(12)

4 of 40

American Institute of Aeronautics and Astronautics



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u

y

Velocity Profile − Perfectly Insulating Walls

Ha=0 Ha=2 Ha=5 Ha=10 Ha=100 

c=0 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u

y

Velocity Profile − Perfectly Conducting Walls

Ha=0 Ha=2 Ha=5 

Ha=10 

Ha=100 

c=∞ 

Figure 3. Velocity profiles for Hartmann flow at Hartmann numbers Ha = 0, 2, 5, 10, 100 for perfectly insulating walls
(c = 0) and for perfectly conducting walls (c = ∞).
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Figure 4. Induced magnetic field profiles for Hartmann flow at Hartmann numbers Ha = 0, 2, 5, 10, 100 for perfectly
insulating walls (c = 0) and for perfectly conducting walls (c = ∞).

Defining the dimensionless variables

y∗ =
y

yo
(13)

Ū∗ =
Ū

Uo
(14)

b̄∗ =
b̄

bo
(15)

where yo = L, Uo = L2

ρν (−∂P̄
∂x ), and bo = µL2

√
σ
ρν (−∂P̄

∂x ), we can rewrite equations (8) and (9) as

Ha
dŪ∗

dy∗ +
d2b̄∗

dy∗2 = 0 (16)

Ha
db̄∗

dy∗ +
d2Ū∗

dy∗2 = −1 (17)
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with boundary conditions (10) and (11) now expressed as

Ū∗ = 0 at y∗ = ±1
∓ db̄∗

dy∗ − b̄∗
c = 0 at y∗ = ±1

(18)

where Ha = BoL
√

σ
ρν is the Hartmann number. The solution for system (16) – (17) with boundary conditions (18)

is given by

Ū∗(y∗) =
1

Ha

c + 1
cHa + tanh(Ha)

[
1 − cosh(Ha y∗)

cosh(Ha)

]
(19)

b̄∗(y∗) = − y∗

Ha
+

1
Ha

c + 1
cHa + tanh(Ha)

sinh(Ha y∗)
cosh(Ha)

. (20)

Figures 3 and 4 show respectively the velocity and induced magnetic field profiles for different values of the Hartmann
number Ha and for perfectly insulating walls, c = 0, and perfectly conducting walls, c = ∞.

IV. Perturbation Equations

The dimensionless versions of equations (1) and (2) are given in Appendix B. Without loss of generality, we
consider in this work that there are no non-electromagnetic volumetric forces present in the system (f = 0). Dropping
the star notation we can write the dimensionless momentum and induction equations as

∂v
∂t

+ (v · ∇)v = −∇P +
1
R
∇2v +

N

Rm
[(∇× B) × B] (21)

∂B
∂t

+ (v · ∇)B =
1

Rm
∇2B + (B · ∇)v. (22)

Defining the deviation variables as

u = U − Ū

v = V − V̄ = V

bu = Bu − B̄u = Bu − b̄

bv = Bv − B̄v = Bv − Bo

p = P − P̄

we can write the dimensionless perturbation equations as

∂u

∂t
+ (Ū + u)

∂u

∂x
+ v

∂(Ū + u)
∂y

= −∂p

∂x
+

1
R

(
∂2u

∂x2
+

∂2u

∂y2

)

− N

Rm
(Bo + bv)

(
∂bv

∂x
− ∂bu

∂y

)
+

N

Rm
bv ∂b̄

∂y
(23)

∂v

∂t
+ (Ū + u)

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1
R

(
∂2v

∂x2
+

∂2v

∂y2

)

+
N

Rm
(b̄ + bu)

(
∂bv

∂x
− ∂bu

∂y

)
− N

Rm
bu ∂b̄

∂y
(24)

∂u

∂x
+

∂v

∂y
= 0 (25)
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∂bu

∂t
+ (Ū + u)

∂bu

∂x
+ v

∂(b̄ + bu)
∂y

=
1

Rm

(
∂2bu

∂x2
+

∂2bu

∂y2

)

+(b̄ + bu)
∂u

∂x
+ (Bo + bv)

∂u

∂y
+ bv ∂U

∂y
(26)

∂bv

∂t
+ (Ū + u)

∂bv

∂x
+ v

∂bv

∂y
=

1
Rm

(
∂2bv

∂x2
+

∂2bv

∂y2

)

+(b̄ + bu)
∂v

∂x
+ (Bo + bv)

∂v

∂y
(27)

∂bu

∂x
+

∂bv

∂y
= 0. (28)

with initial conditions u(x, y, 0) = uo(x, y), v(x, y, 0) = vo(x, y), bu(x, y, 0) = bu
o (x, y), bv(x, y, 0) = bv

o(x, y) for
−∞ < x < ∞, −1 < y < 1 and t > 0.

V. Energy Analysis

Choosing the energy function

E(v,B) =
1
2

∫ 1

−1

∫ d

0

k1(u2 + v2) + k2(bu2
+ bv2

)dxdy, (29)

we can compute

Ė(v,B) =
∫ 1

−1

∫ d

0

(k1uut + k1vvt + k2b
ubu

t + k2b
vbv

t )dxdy

= k1

∫ 1

−1

∫ d

0

−u

[
Ūux + uux + vŪ

′
+ vuy − 1

R
(uxx + uyy) + px

]
dxdy (30)

+k1

∫ 1

−1

∫ d

0

−u

[
N

Rm
Bo

(
bv
x − bu

y

)
+

N

Rm
bv

(
bv
x − bu

y

)− N

Rm
bv b̄

′
]

dxdy (31)

+k1

∫ 1

−1

∫ d

0

−v

[
Ūvx + uvx + vvy − 1

R
(vxx + vyy) + py

]
dxdy (32)

+k1

∫ 1

−1

∫ d

0

−v

[
− N

Rm
b̄
(
bv
x − bu

y

)− N

Rm
bu

(
bv
x − bu

y

)
+

N

Rm
bub̄

′
]

dxdy (33)

+k2

∫ 1

−1

∫ d

0

−bu

[
Ūbu

x + ubu
x + vb̄

′
+ vbu

y − 1
Rm

(
bu
xx + bu

yy

)]
dxdy (34)

+k2

∫ 1

−1

∫ d

0

−bu
[
−b̄ux − buux − Bouy − bvuy − bvŪ

′]
dxdy (35)

+k2

∫ 1

−1

∫ d

0

−bv

[
Ūbv

x + ubv
x + vbv

y − 1
Rm

(
bv
xx + bv

yy

)]
dxdy (36)

+k2

∫ 1

−1

∫ d

0

−bv
[−b̄vx − buvx − Bovy − bvvy

]
dxdy., (37)

where Ū
′
and b̄

′
denote Ūy and b̄y respectively. We assume periodic boundary conditions in the streamwise direction,

i.e., v(x = 0) = v(x = d), B(x = 0) = B(x = d) and P (x = 0) = P (x = d). In addition we apply control in the
wall normal direction

u(x,−1, t) = u(x, 1, t) = 0 (38)
v(x,−1, t) = v(x, 1, t) = vwall(x, t), (39)

and measure the wall normal component of the induced magnetic field

bu(x,−1, t) = bu(x, 1, t) = 0 (40)
bv(x,−1, t) = bv

bot wall(x, t), bv(x, 1, t) = bv
top wall(x, t). (41)
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Lemma 1 Taking into account boundary conditions (38)–(41) the time derivative of E(v,B) along the trajectories
can be written as

Ė(v,B) = − 1
R

m(v,B) −
∫ d

0

vwall


k1∆p + k2

∆
(
bv2

)
2


 dx + g(v,B), (42)

where

m(v,B) = k1

∫ 1

−1

∫ d

0

(u2
x + u2

y + v2
x + v2

y)dxdy

+ k2
R

Rm

∫ 1

−1

∫ d

0

(
(bu

x)2 + (bu
y )2 + (bv

x)2 + (bv
y)2

)
dxdy, (43)

g(v,B) = −k1

∫ 1

−1

∫ d

0

Ū
′
uvdxdy (44)

− k2

∫ 1

−1

∫ d

0

b̄
′
buvdxdy (45)

+ k2

∫ 1

−1

∫ d

0

Ū
′
bubvdxdy (46)

+ k1

∫ 1

−1

∫ d

0

N

Rm
b̄
′
(ubv − vbu) dxdy (47)

+ k1

∫ 1

−1

∫ d

0

N

Rm
b̄
(
bv
x − bu

y

)
vdxdy (48)

− k1

∫ 1

−1

∫ d

0

N

Rm
Bo

(
bv
x − bu

y

)
udxdy (49)

+ k2

∫ 1

−1

∫ d

0

b̄ (buux + bvvx) dxdy (50)

+ k2

∫ 1

−1

∫ d

0

Bo (buuy + bvvy) dxdy (51)

+ k1

∫ 1

−1

∫ d

0

N

Rm
bu

(
bv
x − bu

y

)
vdxdy (52)

− k1

∫ 1

−1

∫ d

0

N

Rm
bv

(
bv
x − bu

y

)
udxdy (53)

+ k2

∫ 1

−1

∫ d

0

bubuuxdxdy (54)

+ k2

∫ 1

−1

∫ d

0

bubvvxdxdy (55)

+ k2

∫ 1

−1

∫ d

0

bvbuuydxdy (56)

+ k2

∫ 1

−1

∫ d

0

bvbvvydxdy, (57)

and

∆p = p(x, 1, t) − p(x,−1, t) = P (x, 1, t) − P (x,−1, t) (58)

∆
(
bv2

)
= (bv(x, 1, t))2 − (bv(x,−1, t))2 = bv2

(x, 1, t) − bv2
(x,−1, t). (59)

Proof. See Appendix C.
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The stretching of material elements accompanied by folding are keys to effective mixing. The measure (43)
seems to be strongly connected to mixing since there is a direct relation between stretching of material elements
and the spatial gradients of the flow field. Folding is present implicitly in (43) due to the boundedness of the flow
domain and the fact that v satisfies the Navier-Stokes equation.

Lemma 2 The function g(v,B) satisfies

|g(v,B)| ≤ g1m(v,B) + g2m
2(v,B) + g3

∫ d

0

v2
walldx + g4

∫ d

0

(bv
top wall)

2dx + g5

(∫ d

0

(bv
top wall)

2dx

)2

where g1, g2, g3, g4 and g5 are constants conveniently defined.

Proof. See Appendix D.

The design goal is a feedback control law, in terms of suction and blowing of fluid normally to the channel wall,
that is optimal with respect to some meaningful cost functional related to m(v,B).

Theorem 1 The cost functional

J(vwall) = lim
t→∞

[
2βE(v(t),B(t)) +

∫ t

0

h(v(τ),B(τ))dτ

]
(60)

where

h(v,B) =
2β

R
m(v,B) − 2β


g(v,B) + g4

∫ d

0

(bv
top wall)

2dx + g5

(∫ d

0

(bv
top wall)

2dx

)2



−β

∫ d

0

v2
walldx − β

∫ d

0


k1∆p + k2

∆
(
bv2

)
2




2

dx (61)

is maximized by the control

vwall = −

k1∆p + k2

∆
(
bv2

)
2


 . (62)

Moreover, solutions of system (23)–(28) satisfy

h(v,B) ≤ l1m(v,B) + l2m
2(v,B) − l3

∫ d

0

v2
walldx − β

∫ d

0


k1∆p + k2

∆
(
bv2

)
2




2

dx (63)

for arbitrary values of control vwall and with

l1 = 2β

(
1
R

+ g1

)
, l2 = 2βg2, l3 = β − g3. (64)

Proof. By Lemma 1, we can write equation (61)

h(v,B) =


−2βĖ(v,B) − 2β

∫ d

0

vwall


k1∆p + k2

∆
(
bv2

)
2


 dx + 2βg(v,B)


− 2βg(v,B)

−2βg4

∫ d

0

(bv
top wall)

2dx − 2βg5

(∫ d

0

(bv
top wall)

2dx

)2

−β

∫ d

0

v2
walldx − β

∫ d

0


k1∆p + k2

∆
(
bv2

)
2




2

dx
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= −2βĖ(v,B) − 2βg4

∫ d

0

(bv
top wall)

2dx − 2βg5

(∫ d

0

(bv
top wall)

2dx

)2

−β

∫ d

0

v2
walldx − 2β

∫ d

0

vwall


k1∆p + k2

∆
(
bv2

)
2


 dx − β

∫ d

0


k1∆p + k2

∆
(
bv2

)
2




2

dx

= −2βĖ(v,B) − 2βg4

∫ d

0

(bv
top wall)

2dx − 2βg5

(∫ d

0

(bv
top wall)

2dx

)2

−β

∫ d

0


vwall +


k1∆p + k2

∆
(
bv2

)
2






2

dx (65)

and the cost functional can be written as

J(vwall) = lim
t→∞

[
2βE(v(t),B(t)) − 2β

∫ t

0

Ė(v(τ),B(τ))dτ

−2βg4

∫ t

0

∫ d

0

(bv
top wall)

2dxdτ − 2βg5

∫ t

0

(∫ d

0

(bv
top wall)

2dx

)2

dτ

−β

∫ t

0

∫ d

0


vwall +


∆p +

∆
(
bv2

)
2






2

dxdτ




= 2βE(v(0),B(0)) − 2β lim
t→∞


g4

∫ t

0

∫ d

0

(bv
top wall)

2dxdτ + g5

∫ t

0

(∫ d

0

(bv
top wall)

2dx

)2

dτ




−β lim
t→∞

∫ t

0

∫ d

0


vwall +


k1∆p + k2

∆
(
bv2

)
2






2

dxdτ. (66)

The cost functional (60) is maximized when the last integral in (66) is zero. Therefore the control (62) is optimal.
In addition, by Lemma 2 we can write

h(v,B) ≤ 2β

R
m(v,B) − β

∫ d

0

v2
walldx − β

∫ d

0


k1∆p + k2

∆
(
bv2

)
2




2

dx − 2βg4

∫ d

0

(bv
top wall)

2dx

−2βg5

(∫ d

0

(bv
top wall)

2dx

)2

+ 2β

(
g1m(v,B) + g2m

2(v,B) + g3

∫ d

0

v2
walldx

+g4

∫ d

0

(bv
top wall)

2dx + g5

(∫ d

0

(bv
top wall)

2dx

)2



≤ l1m(v,B) + l2m
2(v,B) − l3

∫ d

0

v2
walldx − β

∫ d

0


k1∆p + k2

∆
(
bv2

)
2




2

dx.

Inequality (63) implies that h(v,B) cannot be made large without making m(v,B) large as long as β is chosen to
make k3 > 0. Thus, the control law (62) maximizes mixing, with minimal control (vwall) and sensing

(
∆p,∆

(
bv2

))
effort.

It is interesting to note that the control law (62) is independent of the physical parameters of the flow and
therefore completely robust against their uncertainties. The proposed controller requires direct measurement of
physical variables (pressure and induced magnetic field) only at the boundary of the flow domain. By pairing up
the collocated pressure and magnetic field sensors, and velocity actuators, the need for centralized computation and
wiring is eliminated. These important properties make the proposed control strategy implementation-ready.
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VI. Numerical Method

A direct numerical simulation is performed based on the full MHD equations (Navier-Stokes equation and
Magnetic Induction equation). A code based on the full MHD equations is necessary in this case to allow the mea-
surement of the induced magnetic field at the boundary, as is required by the proposed control law (62). Although
it is possible to find past and present research on the simulation of the full MHD equations for compressible flows,
the work done on unsteady incompressible flows is scarce. The implementation of a code for simulating the full
MHD equations in an incompressible flow is a very challenging problem. Firstly, one source of difficulty resides on
the multiple time scales of the system; while the momentum equation is characterized by a R � 1, the induction
equation is characterized by a Rm � 1. Secondly, the MHD equations become stiffer as the magnetic Reynolds
number decreases. Generally, the compressible MHD equations, written in flux vector formulation, are numerically
solved using artificial viscosity or nonlinear flux limiters. Finally, the numerically-computed magnetic and velocity
fields must satisfy the incompressibility conditions. When the full set of MHD equations is solved numerically,
the experience has shown that it is very difficult for the magnetic field to remain divergence-free. Numerous tech-
niques have been proposed to deal with these numerical problems.21–30 Based on the similar structures of the
Navier-Stokes and Magnetic Induction equations, our first approach to the problem was to integrate the equations
with different integration steps on a staggered grid within a periodic channel flow geometry using a hybrid Fourier
pseudospectral–finite difference discretization and the fractional step technique. Taking advantage of the periodic
boundary conditions in the streamwise (x) direction, this direction is discretized using Fourier pseudospectral meth-
ods,31 while the wall-normal (y) direction is discretized using central finite differences on a non-uniform staggered
grid.32 The equations are integrated in time using a fractional step method,33 designed to ensure the fulfillment of
the divergence-free conditions, based on a hybrid Runge-Kutta/Crank-Nicolson time discretization.34 The nonlinear
terms are integrated explicitly using a fourth-order, low-storage Runge-Kutta method, while the viscous terms are
treated implicitly using the Crank-Nicolson method.

VII. Simulation Results

In this section, the laminarization property of the imposed magnetic field is studied numerically. In addition,
the effectiveness of the proposed control law (62) for mixing enhancement is numerically tested. All the simulation
studies are carried out for the same flow domain:

−1 <y < 1
0 <x < 4π

The same mesh is used in all the simulations presented in this section (NX = 150 andNY = 128). Simulation studies
are carried out for different Reynolds numbers following a specific procedure: first, a fully established hydrodynamic
flow is calculated assuming that there is no magnetic field present in the system; second, a magnetic field is imposed
on the fully hydrodynamic established flow, which leads to another fully established magnetohydrodynamic flow with
lower perturbation energy or even to a linear stable magnetohydrodynamic flow; finally, boundary feedback control
is applied to the magnetohydrodynamic flow and an increase of the complexity of the flow pattern is observed. This
suggests improved mixing, which is confirmed by studies of the behavior of dye blobs positioned in the flow.

A. Hydrodynamic Channel Flow

Incompressible conventional flows in 2D channels can be stable for low Reynolds numbers, as infinitesimal pertur-
bations in the flow field are damped out. The flows turn unstable for high Reynolds numbers (Re > 5772).35 Such
flows usually reach a statistically steady state, which we call fully established flows. The full MHD code is capable
of simulating 2D pure hydrodynamic channel flows by simply setting B0 = 0, which means that no magnetic field
is imposed. Three pure hydrodynamics flows are simulated: Re = 6000 (Figure 5(a)), Re = 7500 (Figure 6(a)), and
Re = 10000 (Figure 7(a)). The flux mass Q is fixed to 1.5. In all three cases, a fully established flow showing some
degree of vorticity is reached when the initial equilibrium velocity profile is infinitesimally perturbed at t = 0. The
initial velocity profile is the parabolic equilibrium solution of the Navier-Stokes equation, which is linearly unstable
for these Reynolds numbers.
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B. Stabilization Effect of the Imposed Magnetic Field in MHD Flows

Simulation studies show the stabilizing effect of the imposed magnetic field in the 2D Hartmann flow. These
simulation studies start at t = 0 with the fully established flows reached in the pure hydrodynamic channels
(Subsection A). Magnetic fields of three different levels of strength (B∗

0 = 0.1, 0.2, 0.3) are imposed on each fully
established flow at time t = 0. The magnetic Reynolds number is Rem = 0.1 in all cases. Observing the vorticity
maps, it is interesting to note that weak magnetic fields (Ha < 3) have significant stabilization effects on the
fully established flows for all the Reynolds numbers: Re = 6000 (Figure 5(b)), Re = 7500 (Figure 6(b)), and
Re = 10000 (Figure 7(b)). Flows with lower Reynolds number, with stronger tendency towards stability, are more
easily stabilized by the magnetic fields. The perturbation energy of the velocity field, defined as

E(v) =
∫ 1

−1

∫ d

0

(u2 + v2)dxdy, (67)

can be used to quantify the level of stability, or instability, of the flow. The evolutions in time of the perturbation
energies are presented for the Reynolds numbers under consideration: Re = 6000 (Figure 5(c)), Re = 7500 (Figure
6(c)), and Re = 10000 (Figure 7(c)). In all cases, the kinetic energy of the flow is reduced by the imposed magnetic
field, and another fully established flow with lower perturbation energy, or even a linear stable flow, is reached.

C. Active Boundary Feedback Control of MHD flows

The effect of active boundary feedback control in each fully established MHD flow presented in Subsection B is
studied here. The time evolution of the vorticity maps are shown for B∗

0 = 0.3 and the different considered Reynold
numbers: Re = 6000 (Figure 8(a)), Re = 7500 (Figure 9(a)), and Re = 10000 (Figure 10(a)). The stabilization
effect of lower Reynolds number and stronger magnetic fields can be clearly seen from the plots. Figures 8(b)
(Re = 6000), 9(b) (Re = 7500), and 10(b) (Re = 10000) show the perturbation energy E(v) and the control effort
C(v), which is defined as

C(v) =

√∫ d

0

v(x,−1, t)2 + v(x, 1, t)2dx. (68)

The ratio between the kinetic energy of the boundary control flow and the perturbation kinetic energy, C2(v)/E(v),
is less than 1%, which suggests that small control can result in considerable mixing effect. A intuitive representation
of the control mechanism can be seen from the boundary zoom-in (Figure 8(c)). The detailed velocity vectors show
that the boundary control is pushing, by blowing, the nearby vortex into the center of the flow.

A particle tracking analysis is carried out to further visualize the mixing effectiveness of the control law. The
tracking starts with the particles concentrated on several circular regions (Figure 11). The particles are assumed
to exactly follow the fluid motion. Figures 12, 13, and 14 show the particle map evolutions for the controlled flows
associated with Reynold numbers Re = 6000, Re = 7500, and Re = 10000 respectively.

VIII. Conclusions and Future Work

Using the L2-norm of first-order spatial derivatives of the velocity and magnetic field perturbations as a measure
of mixing, a nonlinear Lyapunov-based boundary feedback control law that maximizes this measure, minimizing
the control and sensing efforts, was designed for a 2D Hartman flow. The effectiveness of the optimal controller in
enhancing mixing in 2D Hartmann flow was demonstrated in direct numerical simulations using a full MHD code
based on a hybrid Fourier pseudospectral-finite difference discretization scheme and the fractional step technique.

In conventional flows, although the nature of turbulence in the uncontrolled channel flow is inherently three
dimensional, the control strategies for 2D and 3D channels do not differ. Therefore, focusing on the 2D case
reduces the effort expended on numerical issues and allows to concentrate on control issues. In the case of the
mixing problem, studying the 2D problem is indeed conservative: the neglected 3D instability mechanisms may be
expected to substantially increase the rate of mixing beyond that seen in 2D model flows. This may not be the case
for MHD flows, where the phenomena are fundamentally 3D (the 2D model flow not only neglects 3D turbulence
(destabilizing) mechanisms but also 3D Lorentz force (stabilizing) mechanisms). For this reason, attention will be
given in the future to “general” 2D, where the flow variables are functions of two space variables but have three
components, and 3D geometries. In addition, the heat equation will be incorporated into the code in order to assess
the effect of feedback boundary control on the heat transfer properties of the system.
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(a) Fully established flow (t=0)

(b) Flow being stablized by magnetic field (B∗
0 = 0.3, t=140,260,374)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200  1400

E
(v

)

Time

Be=0.1, Ha=0.77
Be=0.2, Ha=1.55
Be=0.3, Ha=2.31

(c) Perturbation energy as function of time (B∗
0=0.1,0.2,0.3)

Figure 5. Simulation results at Re=6000
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(a) Fully established flow (t=0)

(b) Flow being stablized by magnetic field (B∗
0 = 0.3, t=140,285,374)
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(c) Perturbation energy as function of time (B∗
0=0.1,0.2,0.3)

Figure 6. Simulation results at Re=7500
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(a) Fully established flow (t=0)

(b) Flow being stablized by magnetic field (B∗
0 = 0.3, t=140,281,374)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  500  1000  1500  2000  2500

E
(v

)

Time

Be=0.1, Ha=1
Be=0.2, Ha=2
Be=0.3, Ha=3

(c) Perturbation energy as function of time (B∗
0=0.1,0.2,0.3)

Figure 7. Simulation results at Re=10000
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(a) Flow being destabilized by boundary control (Re=6000, B∗
0 = 0.3, t=47,187,654)
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(b) Perturbation energy and control effort (Re=6000, B∗
0=0.1,0.2,0.3)

(c) Pressure and velocity zoom at boundary (Re=6000, B∗
0 = 0.3)

Figure 8. Controlled flow at Re=6000
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(a) Flow being destablized by boundary control (Re=7500, B∗
0 = 0.3, t=47,140,327)
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(b) Perturbation energy and control effort (Re=7500, B∗
0=0.1,0.2,0.3)

Figure 9. Controlled flow at Re=7500
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(a) Flow being destabilized by boundary control (Re=10000, B∗
0 = 0.3, t=47,140,280)
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(b) Perturbation energy and control effort (Re=10000, B∗
0=0.1,0.2,0.3)

Figure 10. Controlled flow at Re=10000

Figure 11. Initial particle distribution (t=0)
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Figure 12. Particle distribution for controlled flow (Re=6000, B∗
0 = 0.3, t=47,187,654)

Figure 13. Particle distribution for controlled flow (Re=7500, B∗
0 = 0.3, t=47,140,327)
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Figure 14. Particle distribution for controlled flow (Re=10000, B∗
0 = 0.3, t=47,140,280)

Appendix A: Induction Equation

Ohm’s law:
j = σ(E + v × B) (A-1)

Faraday’s law:
∂B
∂t

= −∇× E (A-2)

Ampere’s law:
µj = ∇× B (A-3)

B is solenoidal:
∇ · B = 0 (A-4)

v is solenoidal:
∇ · v = 0 (A-5)

From Ohm’s law (A-1) we can write the electrical field E as

E =
j
σ
− v × B (A-6)

and rewrite the Faraday’s law (A-2) as
∂B
∂t

= −∇× (
j
σ
− v × B). (A-7)

Considering, in addition, Ampere’s law (A-3), it is possible to write the current density j as

j =
∇× B

µ
(A-8)

and obtain

∂B
∂t

= − 1
σ
∇×

(∇× B
µ

)
+ ∇× (v × B) (A-9)

= − 1
µσ

[∇(∇ · B) −∇2B
]
+ [(B · ∇)v − B(∇ · v) − (v · ∇)B + v(∇ · B)] (A-10)
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where we have used the vectorial relationships

∇× (∇× a) = ∇(∇ · a) −∇2a

∇× (a × b) = (b · ∇)a − b(∇ · a) − (a · ∇)b + a(∇ · b).

Taking into account from equations (A-4) and (A-5) that ∇ · B = 0 and ∇ · v = 0 we can finally write

∂B
∂t

+ (v · ∇)B =
1

µσ
∇2B + (B · ∇)v. (A-11)

Appendix B: Non-dimensional Equations

Let us start with the transport equation of linear momentum

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇P + ρν∇2v + f + j × B, (B-1)

defining the dimensionless variables

v∗ =
v

vo
(B-2)

x∗ =
x
L

(B-3)

t∗ =
vot

L
(B-4)

B∗ =
B
bo

(B-5)

j∗ =
j

σvobo
(B-6)

f∗ =
Lf
ρv2

o

(B-7)

we can write
∂v∗

∂t∗
+ (v∗ · ∇∗)v∗ = −∇∗P ∗ +

1
R
∇∗2

v∗ + f∗ + N (j∗ × B∗) , (B-8)

where R = voL
ν is the Reynolds number, and N = σLb2o

ρvo
is the Stuart number. In addition, we can write

j∗ =
1

Rm
(∇∗ × B∗) , (B-9)

where Rm = µσvoL is the magnetic Reynolds number, and rewrite the non-dimensional momentum equation as

∂v∗

∂t∗
+ (v∗ · ∇∗)v∗ = −∇∗P ∗ +

1
R
∇∗2

v∗ + f∗ +
N

Rm
[(∇∗ × B∗) × B∗] . (B-10)

The x̂ component of equation (B-10) can be written as

∂U∗

∂t∗
+ (U∗ ∂

∂x∗ + V ∗ ∂

∂y∗ )U∗ = −∂P ∗

∂x∗ +
1
R

(
∂2U∗

∂x∗2 +
∂2U∗

∂y∗2

)
− N

Rm
Bv∗

(
∂Bv∗

∂x∗ − ∂Bu∗

∂y∗

)
,

which in steady state reduces to

0 = −∂P̄ ∗

∂x∗ +
1
R

∂2Ū∗

∂y∗2 +
N

Rm
B∗

o

∂b̄∗

∂y∗

0 = −∂P̄ ∗

∂x∗ +
ν

voL

∂2Ū∗

∂y∗2 +
b2
o

µρv2
o

B∗
o

∂b̄∗

∂y∗

−1 =
ν

voL
(
−∂P̄∗

∂x∗

) ∂2Ū∗

∂y∗2 +
b2
o

µρv2
o

(
−∂P̄∗

∂x∗

)B∗
o

∂b̄∗

∂y∗ ,
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since U∗(x∗, y∗, t∗) = Ū∗(y∗), V ∗(x∗, y∗, t∗) = V̄ ∗(y∗) = 0, Bu∗
(x∗, y∗, t∗) = B̄u∗

(y∗) = b̄∗(y∗) and Bv∗
(x∗, y∗, t∗) =

B̄v∗
(y) = B∗

o . Recalling that

∂P̄ ∗

∂x∗ =
L

ρv2
o

∂P̄

∂x

B∗
o =

Bo

bo

we can write

−1 =
νρvo

L2
(
−∂P̄

∂x

) ∂2Ū∗

∂y∗2 +
boBo

µL
(
−∂P̄

∂x

) ∂b̄∗

∂y∗ .

Making

vo =
L2

(
−∂P̄

∂x

)
ρν

bo = µL2

√
σ

ρν

(
−∂P̄

∂x

)

we can recover equation (17)

−1 =
∂2Ū∗

∂y∗2 + Ha
∂b̄∗

∂y∗ (B-11)

where Ha = BoL
√

σ
ρν .

Let us now consider the equation of magnetic induction

∂B
∂t

+ (v · ∇)B =
1

µσ
∇2B + (B · ∇)v. (B-12)

Using the dimensionless variables v∗, x∗, t∗, and B∗, we can write the non-dimensional induction equation

∂B∗

∂t∗
+ (v∗ · ∇∗)B∗ =

1
Rm

∇∗2
B∗ + (B∗ · ∇∗)v∗. (B-13)

The x̂ component of equation (B-13) can be written as

∂Bu∗

∂t∗
+ (U∗ ∂

∂x∗ + V ∗ ∂

∂y∗ )Bu∗
=

1
Rm

(
∂2Bu∗

∂x∗2 +
∂2Bu∗

∂y∗2

)
+

(
Bu∗ ∂

∂x∗ + Bv∗ ∂

∂y∗

)
U∗,

which in steady state reduces to

0 =
1

Rm

∂2b̄∗

∂y∗2 + B∗
o

∂Ū∗

∂y∗

0 =
∂2b̄∗

∂y∗2 + µσLvoB
∗
o

∂Ū∗

∂y∗ .

Recalling that

B∗
o =

Bo

bo

we can write

0 =
∂2b̄∗

∂y∗2 +
µσLvoBo

bo

∂Ū∗

∂y∗

and recover equation (16)

0 =
∂2b̄∗

∂y∗2 + Ha
∂Ū∗

∂y∗ .
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Appendix C: Proof of Lemma 1

Integrating by parts expression (30) we have∫ 1

−1

∫ d

0

−u

[
Ūux + uux + vŪ

′
+ vuy − 1

R
(uxx + uyy) + px

]
dxdy

=
∫ 1

−1

∫ d

0

[
−Ūuux − u2ux − uvŪ

′ − vuuy +
1
R

u (uxx + uyy) − upx

]
dxdy

= −
∫ 1

−1

∫ d

0

Ū
1
2
(u2)xdxdy −

∫ 1

−1

∫ d

0

Ū
′
uvdxdy −

∫ 1

−1

∫ d

0

1
2
u(u2)xdxdy

−
∫ 1

−1

∫ d

0

1
2
v(u2)ydxdy +

∫ 1

−1

∫ d

0

1
R

uuxxdxdy +
∫ 1

−1

∫ d

0

1
R

uuyydxdy −
∫ 1

−1

∫ d

0

upxdxdy

= −
∫ 1

−1

Ū
1
2
u2

∣∣d
0dy︸ ︷︷ ︸

=0

−
∫ 1

−1

∫ d

0

Ū
′
uvdxdy −

∫ 1

−1

1
2
uu2

∣∣d
0dy︸ ︷︷ ︸

=0

+
∫ 1

−1

∫ d

0

1
2
u2uxdxdy

−
∫ d

0

1
2
vu2

∣∣1−1dx︸ ︷︷ ︸
=0

+
∫ 1

−1

∫ d

0

1
2
u2vydxdy +

1
R

∫ 1

−1

uux

∣∣d
0dy︸ ︷︷ ︸

=0

− 1
R

∫ 1

−1

∫ d

0

(ux)2dxdy

+
1
R

∫ d

0

uuy

∣∣1−1dx︸ ︷︷ ︸
=0

− 1
R

∫ 1

−1

∫ d

0

(uy)2dxdy −
∫ 1

−1

up
∣∣d
0dy︸ ︷︷ ︸

=0

+
∫ 1

−1

∫ d

0

uxpdxdy

= −
∫ 1

−1

∫ d

0

Ū
′
uvdxdy +

∫ 1

−1

∫ d

0

1
2
u2 (ux + vy)︸ ︷︷ ︸

=0 (25)

dxdy − 1
R

∫ 1

−1

∫ d

0

((ux)2 + (uy)2)dxdy

+
∫ 1

−1

∫ d

0

uxpdxdy

= −
∫ 1

−1

∫ d

0

Ū
′
uvdxdy − 1

R

∫ 1

−1

∫ d

0

((ux)2 + (uy)2)dxdy +
∫ 1

−1

∫ d

0

uxpdxdy (C-1)
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Integrating by parts expression (32) we have∫ 1

−1

∫ d

0

−v

[
Ūvx + uvx + vvy − 1

R
(vxx + vyy) + py

]
dxdy

=
∫ 1

−1

∫ d

0

[
−Ūvvx − uvvx − v2vy +

1
R

v (vxx + vyy) − vpy

]
dxdy

= −
∫ 1

−1

∫ d

0

Ū
1
2
(v2)xdxdy −

∫ 1

−1

∫ d

0

1
2
u(v2)xdxdy −

∫ 1

−1

∫ d

0

1
2
v(v2)ydxdy

+
∫ 1

−1

∫ d

0

1
R

vvxxdxdy +
∫ 1

−1

∫ d

0

1
R

vvyydxdy −
∫ 1

−1

∫ d

0

vpydxdy

= −
∫ 1

−1

Ū
1
2
v2

∣∣d
0dy︸ ︷︷ ︸

=0

−
∫ 1

−1

1
2
uv2

∣∣d
0dy︸ ︷︷ ︸

=0

+
∫ 1

−1

∫ d

0

1
2
v2uxdxdy

−
∫ d

0

1
2
vv2

∣∣1−1dx︸ ︷︷ ︸
=0

+
∫ 1

−1

∫ d

0

1
2
v2vydxdy +

1
R

∫ 1

−1

vvx

∣∣d
0dy︸ ︷︷ ︸

=0

− 1
R

∫ 1

−1

∫ d

0

(vx)2dxdy

1
R

∫ d

0

vvy

∣∣1−1dx − 1
R

∫ 1

−1

∫ d

0

(vy)2dxdy −
∫ d

0

vp
∣∣1−1dx +

∫ 1

−1

∫ d

0

vypdxdy

=
∫ 1

−1

∫ d

0

1
2
v2 (ux + vy)︸ ︷︷ ︸

=0 (25)

dxdy − 1
R

∫ 1

−1

∫ d

0

((vx)2 + (vy)2)dxdy +
∫ d

0

v(
vy

R
− p)

∣∣1−1dx

+
∫ 1

−1

∫ d

0

vypdxdy

= − 1
R

∫ 1

−1

∫ d

0

((vx)2 + (vy)2)dxdy +
∫ 1

−1

∫ d

0

vypdxdy −
∫ d

0

vp
∣∣1−1dx

= − 1
R

∫ 1

−1

∫ d

0

((vx)2 + (vy)2)dxdy +
∫ 1

−1

∫ d

0

vypdxdy −
∫ d

0

vwall∆pdx (C-2)

where we have taken into account that 0 = ux + vy |y=±1 = vy |y=±1 (u |y=±1 = 0 ⇒ ux |y=±1 = 0).

24 of 40

American Institute of Aeronautics and Astronautics



Integrating by parts expression (34) we have∫ 1

−1

∫ d

0

−bu

[
Ūbu

x + ubu
x + vb̄

′
+ vbu

y − 1
Rm

(
bu
xx + bu

yy

)]
dxdy

=
∫ 1

−1

∫ d

0

[
−Ūbubu

x − ububu
x − vb̄

′
bu − vbubu

y +
bu

Rm

(
bu
xx + bu

yy

)]
dxdy

=
∫ 1

−1

∫ d

0

−Ū
1
2
(bu2

)xdxdy −
∫ 1

−1

∫ d

0

u
1
2
(bu2

)xdxdy −
∫ 1

−1

∫ d

0

b̄
′
vbudxdy

−
∫ 1

−1

∫ d

0

v
1
2
(bu2

)ydxdy +
1

Rm

∫ 1

−1

∫ d

0

bubu
xxdxdy +

1
Rm

∫ 1

−1

∫ d

0

bubu
yydxdy

= −
∫ 1

−1

Ū
1
2
bu2 ∣∣d

0dy︸ ︷︷ ︸
=0

−
∫ 1

−1

u
1
2
bu2 ∣∣d

0dy︸ ︷︷ ︸
=0

+
∫ 1

−1

∫ d

0

1
2
bu2

uxdxdy −
∫ 1

−1

∫ d

0

b̄
′
vbudxdy

−
∫ d

0

v
1
2
bu2 ∣∣1−1dx︸ ︷︷ ︸
=0

+
∫ 1

−1

∫ d

0

1
2
bu2

vydxdy +
1

Rm

∫ 1

−1

bubu
x

∣∣d
0dy︸ ︷︷ ︸

=0

− 1
Rm

∫ 1

−1

∫ d

0

(bu
x)2dxdy

+
1

Rm

∫ 1

−1

∫ d

0

bubu
y

∣∣1−1dx︸ ︷︷ ︸
=0

− 1
Rm

∫ 1

−1

∫ d

0

(bu
y )2dxdy

=
∫ 1

−1

∫ d

0

1
2
bu2

(ux + vy)︸ ︷︷ ︸
=0 (25)

dxdy −
∫ 1

−1

∫ d

0

b̄
′
vbudxdy − 1

Rm

∫ 1

−1

∫ d

0

[
(bu

x)2 + (bu
y )2

]
dxdy

= −
∫ 1

−1

∫ d

0

b̄
′
vbudxdy − 1

Rm

∫ 1

−1

∫ d

0

[
(bu

x)2 + (bu
y )2

]
dxdy (C-3)
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Integrating by parts expression (36) we have∫ 1

−1

∫ d

0

−bv

[
Ūbv

x + ubv
x + vbv

y − 1
Rm

(
bv
xx + bv

yy

)]
dxdy

=
∫ 1

−1

∫ d

0

(
−Ūbvbv

x − ubvbv
x − vbvbv

y +
1

Rm
bv

(
bv
xx + bv

yy

))
dxdy

= −
∫ 1

−1

∫ d

0

Ū
1
2
(bv2

)xdxdy −
∫ 1

−1

∫ d

0

u
1
2
(bv2

)xdxdy −
∫ 1

−1

∫ d

0

v
1
2
(bv2

)ydxdy

+
1

Rm

∫ 1

−1

∫ d

0

bvbv
xxdxdy +

1
Rm

∫ 1

−1

∫ d

0

bvbv
yydxdy

= −
∫ 1

−1

Ū
1
2
bv2 ∣∣d

0dy︸ ︷︷ ︸
=0

−
∫ 1

−1

u
1
2
bv2 ∣∣d

0dy︸ ︷︷ ︸
=0

+
∫ 1

−1

∫ d

0

1
2
bv2

uxdxdy −
∫ d

0

1
2
vbv2 ∣∣1−1dx

+
∫ 1

−1

∫ d

0

1
2
bv2

vydxdy +
1

Rm

∫ 1

−1

bvbv
x

∣∣d
0dy︸ ︷︷ ︸

=0

− 1
Rm

∫ 1

−1

∫ d

0

(bv
x)2dxdy

+
1

Rm

∫ d

0

bvbv
y

∣∣1−1dx − 1
Rm

∫ 1

−1

∫ d

0

(bv
y)2dxdy

=
∫ 1

−1

∫ d

0

1
2
bv2

(ux + vy)︸ ︷︷ ︸
=0 (25)

dxdy −
∫ d

0

1
2
vbv2 ∣∣1−1dx − 1

Rm

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

+
1

Rm

∫ 1

−1

∫ d

0

bvbv
y

∣∣1−1dx

= −
∫ d

0

1
2
vwall∆

(
bv2

)
dx − 1

Rm

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy (C-4)

where we have taken into account that 0 = bu
x + bv

y |y=±1 = bv
y |y=±1 (bu |y=±1 = 0 ⇒ bu

x |y=±1 = 0). Adding (30),
(32), (34) and (36), and taking into account (C-1), (C-2), (C-3) and (C-4) and (25) we obtain

−k1

R

∫ 1

−1

∫ d

0

(u2
x + u2

y + v2
x + v2

y)dxdy − k2

Rm

∫ 1

−1

∫ d

0

(
(bu

x)2 + (bu
y )2 + (bv

x)2 + (bv
y)2

)
dxdy

− k1

∫ d

0

vwall∆pdx − k2

∫ d

0

1
2
vwall∆

(
bv2

)
dx

− k1

∫ 1

−1

∫ d

0

Ū
′
uvdxdy − k2

∫ 1

−1

∫ d

0

b̄
′
buvdxdy

= − 1
R

m(v,B) −
∫ d

0

vwall


k1∆p + k2

∆
(
bv2

)
2


 dx − k1

∫ 1

−1

∫ d

0

Ū
′
uvdxdy − k2

∫ 1

−1

∫ d

0

b̄
′
buvdxdy

Adding (31), (33), (35) and (37) we obtain∫ 1

−1

∫ d

0

N

Rm

{(
bv
x − bu

y

) [
(k1b̄ + k1b

u)v − (k1Bo + k1b
v)u

]}
dxdy

+
∫ 1

−1

∫ d

0

{
(b̄ + bu) (k2b

uux + k2b
vvx) + (Bo + bv) (k2b

uuy + k2b
vvy)

}
dxdy

+
∫ 1

−1

∫ d

0

N

Rm
b̄
′
(k1ubv − k1vbu) dxdy +

∫ 1

−1

∫ d

0

k2Ū
′
bubvdxdy

Consequently we can write the time derivative of E(v,B) as
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Ė(v,B) = − 1
R

m(v,B) −
∫ d

0

vwall


k1∆p + k2

∆
(
bv2

)
2


 dx + g(v,B).

Appendix D: Proof of Lemma 2

We can write

u(x, y, t) = u(x, 1, t) −
∫ 1

y

uy(x, y, t)dy = −
∫ 1

y

uy(x, y, t)dy (D-1)

v(x, y, t) = v(x, 1, t) −
∫ 1

y

vy(x, y, t)dy = vwall(x, t) −
∫ 1

y

vy(x, y, t)dy (D-2)

bu(x, y, t) = bu(x, 1, t) −
∫ 1

y

bu
y (x, y, t)dy = −

∫ 1

y

bu
y (x, y, t)dy (D-3)

bv(x, y, t) = bv(x, 1, t) −
∫ 1

y

bv
y(x, y, t)dy = bv

top wall(x, t) −
∫ 1

y

bv
y(x, y, t)dy (D-4)

and therefore

u2(x, y, t) =
(
−

∫ 1

y

uydy

)2

(D-5)

v2(x, y, t) =
(

vwall(x, t) −
∫ 1

y

vydy

)2

= v2
wall − 2vwall

∫ 1

y

vydy +
(∫ 1

y

vydy

)2

≤ v2
wall + 2bv2

wall +
2
b

(∫ 1

y

vydy

)2

+
(∫ 1

y

vydy

)2

≤ (1 + 2b)v2
wall + (1 +

2
b
)
(∫ 1

y

vydy

)2

(D-6)

(bu)2(x, y, t) =
(
−

∫ 1

y

bu
ydy

)2

(D-7)

(bv)2(x, y, t) =
(

bv
top wall(x, t) −

∫ 1

y

bv
ydy

)2

= (bv
top wall)

2 − 2bv
top wall

∫ 1

y

bv
ydy +

(∫ 1

y

bv
ydy

)2

≤ (bv
top wall)

2 + 2b(bv
top wall)

2 +
2
b

(∫ 1

y

bv
ydy

)2

+
(∫ 1

y

bv
ydy

)2

≤ (1 + 2b)(bv
top wall)

2 + (1 +
2
b
)
(∫ 1

y

bv
ydy

)2

(D-8)

where we have used Young’s inequality with b > 0 to write

vwall

∫ 1

y

vydy ≤ bv2
wall +

1
b

(∫ 1

y

vydy

)2

bv
top wall

∫ 1

y

bv
ydy ≤ b(bv

top wall)
2 +

1
b

(∫ 1

y

bv
ydy

)2

.
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By Schwartz inequality we can write

(∫ 1

y

vydy

)2

=
(∫ 1

y

1vydy

)2

≤
(∫ 1

y

12dy

)(∫ 1

y

v2
ydy

)
= (1 − y)

(∫ 1

y

v2
ydy

)

≤ (1 − y)
(∫ 1

−1

v2
ydy

)
(∫ 1

y

uydy

)2

=
(∫ 1

y

1uydy

)2

≤
(∫ 1

y

12dy

)(∫ 1

y

u2
ydy

)
= (1 − y)

(∫ 1

y

u2
ydy

)

≤ (1 − y)
(∫ 1

−1

u2
ydy

)
(∫ 1

y

bv
ydy

)2

=
(∫ 1

y

1bv
ydy

)2

≤
(∫ 1

y

12dy

)(∫ 1

y

(bv
y)2dy

)
= (1 − y)

(∫ 1

y

(bv
y)2dy

)

≤ (1 − y)
(∫ 1

−1

(bv
y)2dy

)
(∫ 1

y

bu
ydy

)2

=
(∫ 1

y

1bu
ydy

)2

≤
(∫ 1

y

12dy

)(∫ 1

y

(bu
y )2dy

)
= (1 − y)

(∫ 1

y

(bu
y )2dy

)

≤ (1 − y)
(∫ 1

−1

(bu
y )2dy

)

and conclude that∫ 1

−1

∫ d

0

u2dxdy ≤
∫ 1

−1

∫ d

0

(
(1 − y)

∫ 1

−1

u2
ydy

)
dxdy

=
∫ d

0

(∫ 1

−1

(1 − y)dy

)(∫ 1

−1

u2
ydy

)
dx

= 2
∫ 1

−1

∫ d

0

u2
ydxdy (D-9)∫ 1

−1

∫ d

0

v2dxdy ≤
∫ 1

−1

∫ d

0

(1 + 2b)v2
walldxdy +

∫ 1

−1

∫ d

0

(
(1 +

2
b
)(1 − y)

∫ 1

−1

v2
ydy

)
dxdy

= 2(1 + 2b)
∫ d

0

v2
walldx + (1 +

2
b
)
∫ d

0

(∫ 1

−1

(1 − y)dy

)(∫ 1

−1

v2
ydy

)
dx

= 2(1 + 2b)
∫ d

0

v2
walldx + 2(1 +

2
b
)
∫ 1

−1

∫ d

0

v2
ydxdy (D-10)

∫ 1

−1

∫ d

0

(bu)2dxdy ≤
∫ 1

−1

∫ d

0

(
(1 − y)

∫ 1

−1

(bu
y )2dy

)
dxdy

=
∫ d

0

(∫ 1

−1

(1 − y)dy

)(∫ 1

−1

(bu
y )2dy

)
dx

= 2
∫ 1

−1

∫ d

0

(bu
y )2dxdy (D-11)∫ 1

−1

∫ d

0

(bv)2dxdy ≤
∫ 1

−1

∫ d

0

(1 + 2b)(bv
top wall)

2dxdy +
∫ 1

−1

∫ d

0

(
(1 +

2
b
)(1 − y)

∫ 1

−1

(bv
y)2dy

)
dxdy

= 2(1 + 2b)
∫ d

0

(bv
top wall)

2dx + (1 +
2
b
)
∫ d

0

(∫ 1

−1

(1 − y)dy

)(∫ 1

−1

(bv
y)2dy

)
dx

= 2(1 + 2b)
∫ d

0

(bv
top wall)

2dx + 2(1 +
2
b
)
∫ 1

−1

∫ d

0

(bv
y)2dxdy (D-12)
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With this preliminary results we can start now finding bounds to each one of the terms (44)–(57) of g(v,B).
Equation (44) can be bounded as

−
∫ 1

−1

∫ d

0

Ū
′
uvdxdy ≤ |Ū ′ |max

∫ 1

−1

∫ d

0

|u||v|dxdy

and by Young’s inequality

−
∫ 1

−1

∫ d

0

Ū
′
uvdxdy ≤ 1

a1
|Ū ′ |max

∫ 1

−1

∫ d

0

u2dxdy + a1|Ū ′ |max

∫ 1

−1

∫ d

0

v2dxdy

and by equations (D-9) and (D-10)

−
∫ 1

−1

∫ d

0

Ū
′
uvdxdy ≤ 2a1|Ū ′ |max(1 + 2b1)

∫ d

0

v2
walldx

+|Ū ′ |max

{
2
a1

∫ 1

−1

∫ d

0

u2
ydxdy + 2a1(1 +

2
b1

)
∫ 1

−1

∫ d

0

v2
ydxdy

}
(D-13)

Equation (45) can be bounded as

−
∫ 1

−1

∫ d

0

b̄
′
buvdxdy ≤ |b̄′ |max

∫ 1

−1

∫ d

0

|bu||v|dxdy

and by Young’s inequality

−
∫ 1

−1

∫ d

0

b̄
′
buvdxdy ≤ 1

a2
|b̄′ |max

∫ 1

−1

∫ d

0

(bu)2dxdy + a2|b̄′ |max

∫ 1

−1

∫ d

0

v2dxdy

and by equations (D-10) and (D-11)

−
∫ 1

−1

∫ d

0

b̄
′
buvdxdy ≤ 2a2|b̄′ |max(1 + 2b2)

∫ d

0

v2
walldx

+|b̄′ |max

{
2
a2

∫ 1

−1

∫ d

0

(bu
y )2dxdy + 2a2(1 +

2
b2

)
∫ 1

−1

∫ d

0

v2
ydxdy

}
(D-14)

Equation (46) can be bounded as∫ 1

−1

∫ d

0

Ū
′
bubvdxdy ≤ |Ū ′ |max

∫ 1

−1

∫ d

0

|bu||bv|dxdy

and by Young’s inequality∫ 1

−1

∫ d

0

Ū
′
bubvdxdy ≤ 1

a3
|Ū ′ |max

∫ 1

−1

∫ d

0

(bu)2dxdy + a3|Ū ′ |max

∫ 1

−1

∫ d

0

(bv)2dxdy

and by equations (D-11) and (D-12)∫ 1

−1

∫ d

0

Ū
′
bubvdxdy ≤ 2a3|Ū ′ |max(1 + 2b3)

∫ d

0

(bv
top wall)

2dx

+ |Ū ′ |max

{
2
a3

∫ 1

−1

∫ d

0

(bu
y )2dxdy + 2a3(1 +

2
b3

)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}
(D-15)

Equation (47) can be bounded as

∫ 1

−1

∫ d

0

N

Rm
b̄
′
(ubv − vbu) dxdy ≤ N

Rm
|b̄′ |max

{∫ 1

−1

∫ d

0

|u||bv|dxdy +
∫ 1

−1

∫ d

0

|v||bu|dxdy

}

29 of 40

American Institute of Aeronautics and Astronautics



and by Young’s inequality

∫ 1

−1

∫ d

0

N

Rm
b̄
′
(ubv − vbu) dxdy ≤ N

Rm

{
1
a4

|b̄′ |max

∫ 1

−1

∫ d

0

u2dxdy + a4|b̄′ |max

∫ 1

−1

∫ d

0

(bv)2dxdy

}

+
N

Rm

{
1
a5

|b̄′ |max

∫ 1

−1

∫ d

0

(bu)2dxdy + a5|b̄′ |max

∫ 1

−1

∫ d

0

v2dxdy

}

and by equations (D-9)–(D-12)

∫ 1

−1

∫ d

0

N

Rm
b̄
′
(ubv − vbu) dxdy ≤ N

Rm

{
2a4|b̄′ |max(1 + 2b4)

∫ d

0

(bv
top wall)

2dx

+ |b̄′ |max

{
2
a4

∫ 1

−1

∫ d

0

u2
ydxdy + 2a4(1 +

2
b4

)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}}

+
N

Rm

{
2a5|b̄′ |max(1 + 2b5)

∫ d

0

(vwall)2dx

+ |b̄′ |max

{
2
a5

∫ 1

−1

∫ d

0

(bu
y )2dxdy + 2a5(1 +

2
b5

)
∫ 1

−1

∫ d

0

v2
ydxdy

}}
(D-16)

Equation (48) can be bounded as∫ 1

−1

∫ d

0

N

Rm
b̄
(
bv
x − bu

y

)
vdxdy ≤ N

Rm
|b̄|max

∫ 1

−1

∫ d

0

(|bv
x| + |bu

y |
) |v|dxdy

and by Young’s inequality

∫ 1

−1

∫ d

0

N

Rm
b̄
(
bv
x − bu

y

)
vdxdy ≤ N

Rm

{
1
a6

|b̄|max

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bu
y )2

]
dxdy

+ 2a6|b̄|max

∫ 1

−1

∫ d

0

v2dxdy

}

and by equation (D-10)

∫ 1

−1

∫ d

0

N

Rm
b̄
(
bv
x − bu

y

)
vdxdy ≤ N

Rm

{
1
a6

|b̄|max

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bu
y )2

]
dxdy

+ 2a6|b̄|max

{
2(1 + 2b6)

∫ d

0

v2
walldx + 2(1 +

2
b6

)
∫ 1

−1

∫ d

0

v2
ydxdy

}}
(D-17)

Equation (49) can be bounded as

−
∫ 1

−1

∫ d

0

N

Rm
Bo

(
bv
x − bu

y

)
udxdy ≤ N

Rm
Bo

∫ 1

−1

∫ d

0

(|bv
x| + |bu

y |
) |u|dxdy

and by Young’s inequality

−
∫ 1

−1

∫ d

0

N

Rm
Bo

(
bv
x − bu

y

)
udxdy ≤ N

Rm

{
1
a7

Bo

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bu
y )2

]
dxdy

+ 2a7Bo

∫ 1

−1

∫ d

0

u2dxdy

}
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and by equation (D-9)

−
∫ 1

−1

∫ d

0

N

Rm
Bo

(
bv
x − bu

y

)
udxdy ≤ N

Rm

{
1
a7

Bo

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bu
y )2

]
dxdy

+ 2a7Bo2
∫ 1

−1

∫ d

0

u2
ydxdy

}
(D-18)

Equation (50) can be bounded as∫ 1

−1

∫ d

0

b̄ (buux + bvvx) dxdy ≤ |b̄|max

∫ 1

−1

∫ d

0

(|bu||ux| + |bv||vx|) dxdy

and by Young’s inequality∫ 1

−1

∫ d

0

b̄ (buux + bvvx) dxdy ≤ 1
a8

|b̄|max

∫ 1

−1

∫ d

0

u2
xdxdy + a8|b̄|max

∫ 1

−1

∫ d

0

(bu)2dxdy

+
1
a9

|b̄|max

∫ 1

−1

∫ d

0

v2
xdxdy + a9|b̄|max

∫ 1

−1

∫ d

0

(bv)2dxdy

and by equations (D-11) and (D-12)∫ 1

−1

∫ d

0

b̄ (buux + bvvx) dxdy ≤ 1
a8

|b̄|max

∫ 1

−1

∫ d

0

u2
xdxdy +

1
a9

|b̄|max

∫ 1

−1

∫ d

0

v2
xdxdy

+a8|b̄|max2
∫ 1

−1

∫ d

0

(bu
y )2dxdy

+a9|b̄|max

{
2(1 + 2b9)

∫ d

0

(bv
top wall)

2dx + 2(1 +
2
b9

)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}
(D-19)

Equation (51) can be bounded as∫ 1

−1

∫ d

0

Bo (buuy + bvvy) dxdy ≤ Bo

∫ 1

−1

∫ d

0

(|bu||uy| + |bv||vy|) dxdy

and by Young’s inequality∫ 1

−1

∫ d

0

Bo (buuy + bvvy) dxdy ≤ 1
a10

Bo

∫ 1

−1

∫ d

0

u2
ydxdy + a10Bo

∫ 1

−1

∫ d

0

(bu)2dxdy

+
1

a11
Bo

∫ 1

−1

∫ d

0

v2
ydxdy + a11Bo

∫ 1

−1

∫ d

0

(bv)2dxdy

and by equations (D-11) and (D-12)∫ 1

−1

∫ d

0

Bo (buuy + bvvy) dxdy ≤ 1
a10

Bo

∫ 1

−1

∫ d

0

u2
ydxdy +

1
a11

Bo

∫ 1

−1

∫ d

0

v2
ydxdy

+a10Bo2
∫ 1

−1

∫ d

0

(bu
y )2dxdy

+a11Bo

{
2(1 + 2b11)

∫ d

0

(bv
top wall)

2dx + 2(1 +
2

b11
)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}
(D-20)

Equation (52) can be bounded as∫ 1

−1

∫ d

0

N

Rm
bu

(
bv
x − bu

y

)
vdxdy ≤ N

Rm

∫ 1

−1

∫ d

0

(|bv
xbu| + |bu

ybu|) |v|dxdy
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and by Young’s inequality

∫ 1

−1

∫ d

0

N

Rm
bu

(
bv
x − bu

y

)
vdxdy ≤ N

Rm

{
2

a12

∫ 1

−1

∫ d

0

v2dxdy

+ a12

∫ 1

−1

∫ d

0

[
(bv

xbu)2 + (bu
ybu)2

]
dxdy

}

≤ N

Rm

{
2

a12

∫ 1

−1

∫ d

0

v2dxdy

+ a12

{
2

c12

∫ 1

−1

∫ d

0

(bu)4dxdy + c12

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

}}

and by equation (D-10)

∫ 1

−1

∫ d

0

N

Rm
bu

(
bv
x − bu

y

)
vdxdy ≤ N

Rm

{
2

a12

{
2(1 + 2b12)

∫ d

0

v2
walldx + 2(1 +

2
b12

)
∫ 1

−1

∫ d

0

v2
ydxdy

}

+a12c12

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

+a12
2

c12

∫ 1

−1

∫ d

0

(bu)4dxdy

}

Considering that∫ 1

−1

∫ d

0

(bu)4dxdy ≤ 2
∫ 1

−1

∫ d

0

(bu)2dxdy

∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

≤ 2

{
2
∫ 1

−1

∫ d

0

(bu
y )2dxdy

}∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

≤ 2



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2

 (D-21)

we can finally write

∫ 1

−1

∫ d

0

N

Rm
bu

(
bv
x − bu

y

)
vdxdy ≤ N

Rm

{
2

a12

{
2(1 + 2b12)

∫ d

0

v2
walldx + 2(1 +

2
b12

)
∫ 1

−1

∫ d

0

v2
ydxdy

}

+a12c12

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

+
2a12

c12
2



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2



 (D-22)

Equation (53) can be bounded as

−
∫ 1

−1

∫ d

0

N

Rm
bv

(
bv
x − bu

y

)
udxdy ≤ N

Rm

∫ 1

−1

∫ d

0

(|bv
xu| + |bu

yu|) |bv|dxdy
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and by Young’s inequality

−
∫ 1

−1

∫ d

0

N

Rm
bv

(
bv
x − bu

y

)
udxdy ≤ N

Rm

{
2

a13

∫ 1

−1

∫ d

0

(bv)2dxdy

+ a13

∫ 1

−1

∫ d

0

[
(bv

xu)2 + (bu
yu)2

]
dxdy

}

≤ N

Rm

2
a13

∫ 1

−1

∫ d

0

(bv)2dxdy

+
N

Rm
a13

{
2

c13

∫ 1

−1

∫ d

0

u4dxdy + c13

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

}}

and by equation (D-12)

−
∫ 1

−1

∫ d

0

N

Rm
bv

(
bv
x − bu

y

)
udxdy ≤ N

Rm

2
a13

{
2(1 + 2b13)

∫ d

0

(bv
top wall)

2dx + 2(1 +
2

b13
)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}

+
N

Rm
a13

{
2

c13

∫ 1

−1

∫ d

0

u4dxdy + c13

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

}}

Considering that ∫ 1

−1

∫ d

0

u4dxdy ≤ 2
∫ 1

−1

∫ d

0

u2dxdy

∫ 1

−1

∫ d

0

[
u2

x + u2
y

]
dxdy

≤ 2

{
2
∫ 1

−1

∫ d

0

u2
ydx

}∫ 1

−1

∫ d

0

[
u2

x + u2
y

]
dxdy

≤ 2



(∫ 1

−1

∫ d

0

u2
ydxdy

)2

+

(∫ 1

−1

∫ d

0

[
u2

x + u2
y

]
dxdy

)2

 (D-23)

and using equation (D-12) we can finally write

−
∫ 1

−1

∫ d

0

N

Rm
bv

(
bv
x − bu

y

)
udxdy ≤ N

Rm

{
2

a13

{
2(1 + 2b13)

∫ d

0

(bv
top wall)

2dx + 2(1 +
2

b13
)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}

+
2a13

c13
2



(∫ 1

−1

∫ d

0

u2
ydxdy

)2

+

(∫ 1

−1

∫ d

0

[
u2

x + u2
y

]
dxdy

)2



+ a13c13

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

}
(D-24)

Equation (54) can be bounded as∫ 1

−1

∫ d

0

bubuuxdxdy ≤
∫ 1

−1

∫ d

0

|ux|(bu)2dxdy

and by Young’s inequality∫ 1

−1

∫ d

0

bubuuxdxdy ≤ 1
a14

∫ 1

−1

∫ d

0

u2
xdxdy + a14

∫ 1

−1

∫ d

0

(bu)4dxdy

and using equation (D-21) we can finally write∫ 1

−1

∫ d

0

bubuuxdxdy ≤ 1
a14

∫ 1

−1

∫ d

0

u2
xdxdy

+2a14



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2

 (D-25)
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Equation (55) can be bounded as∫ 1

−1

∫ d

0

bubvvxdxdy ≤
∫ 1

−1

∫ d

0

|vx||bubv|dxdy

and by Young’s inequality∫ 1

−1

∫ d

0

bubvvxdxdy ≤ 1
a15

∫ 1

−1

∫ d

0

v2
xdxdy + a15

∫ 1

−1

∫ d

0

(bubv)2dxdy

≤ 1
a15

∫ 1

−1

∫ d

0

v2
xdxdy

+a15

{
1

c15

∫ 1

−1

∫ d

0

(bu)4dxdy + c15

∫ 1

−1

∫ d

0

(bv)4dxdy

}

Using equations (D-21) and considering that∫ 1

−1

∫ d

0

(bv)4dxdy ≤ 2
∫ 1

−1

∫ d

0

(bv)2dxdy

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

≤ 2

{
2 (1 + 2b)

∫ d

0

(bv
top wall)

2dx + 2
(

1 +
2
b

)∫ 1

−1

∫ d

0

(bv
y)2dxdy

}∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

≤ 2 (1 + 2b)



(∫ d

0

(bv
top wall)

2dx

)2

+

(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2



+2
(

1 +
2
b

)

(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2

 (D-26)

we can finally write∫ 1

−1

∫ d

0

bubvvxdxdy ≤ 1
a15

∫ 1

−1

∫ d

0

v2
xdxdy

+
2a15

c15



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2



+2a15c15



(

1 +
2

b15

)(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+ (1 + 2b15)

(∫ 1

−1

∫ d

0

(bv
top wall)

2dxdy

)2

+
(

2 + 2b15 +
2

b15

)(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2

 (D-27)

Equation (56) can be bounded as∫ 1

−1

∫ d

0

bvbvvydxdy ≤
∫ 1

−1

∫ d

0

|vy|(bv)2dxdy

and by Young’s inequality∫ 1

−1

∫ d

0

bvbvvydxdy ≤ 1
a16

∫ 1

−1

∫ d

0

v2
ydxdy + a16

∫ 1

−1

∫ d

0

(bv)4dxdy

34 of 40

American Institute of Aeronautics and Astronautics



and using equation (D-26) we can finally write∫ 1

−1

∫ d

0

bvbvvydxdy ≤ 1
a16

∫ 1

−1

∫ d

0

v2
ydxdy

+2a16



(

1 +
2

b16

)(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+ (1 + 2b16)

(∫ 1

−1

∫ d

0

(bv
top wall)

2dxdy

)2

+
(

2 + 2b16 +
2

b16

)(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2

 (D-28)

Equation (57) can be bounded as∫ 1

−1

∫ d

0

bubvuydxdy ≤
∫ 1

−1

∫ d

0

|uy||bubv|dxdy

and by Young’s inequality∫ 1

−1

∫ d

0

bubvuydxdy ≤ 1
a17

∫ 1

−1

∫ d

0

u2
ydxdy + a17

∫ 1

−1

∫ d

0

(bubv)2dxdy

≤ 1
a17

∫ 1

−1

∫ d

0

u2
ydxdy

+a17

{
1

c17

∫ 1

−1

∫ d

0

(bu)4dxdy + c15

∫ 1

−1

∫ d

0

(bv)4dxdy

}

and using equations (D-21) and (D-26) we can finally write∫ 1

−1

∫ d

0

bubvuydxdy ≤ 1
a17

∫ 1

−1

∫ d

0

u2
ydxdy

+
2a17

c17



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2



+2a17c17



(

1 +
2

b17

)(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+ (1 + 2b17)

(∫ 1

−1

∫ d

0

(bv
top wall)

2dxdy

)2

+
(

2 + 2b17 +
2

b17

)(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2

 (D-29)
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Taking into account equations (D-13), (D-14), (D-15), (D-16), (D-17), (D-18), (D-19), (D-20), (D-22), (D-24),
(D-25), (D-27), (D-28) and (D-29), we can write

|g(v,B)| ≤ k1

{
2a1|Ū ′ |max(1 + 2b1)

∫ d

0

v2
walldx

+ |Ū ′ |max

{
2
a1

∫ 1

−1

∫ d

0

u2
ydxdy + 2a1(1 +

2
b1

)
∫ 1

−1

∫ d

0

v2
ydxdy

}}
(D-30)

+k2

{
2a2|b̄′ |max(1 + 2b2)

∫ d

0

v2
walldx

+ |b̄′ |max

{
2
a2

∫ 1

−1

∫ d

0

(bu
y )2dxdy + 2a2(1 +

2
b2

)
∫ 1

−1

∫ d

0

v2
ydxdy

}}
(D-31)

+k2

{
2a3|Ū ′ |max(1 + 2b3)

∫ d

0

(bv
top wall)

2dx

+ |Ū ′ |max

{
2
a3

∫ 1

−1

∫ d

0

(bu
y )2dxdy + 2a3(1 +

2
b3

)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}}
(D-32)

+k1

{
N

Rm

{
2a4|b̄′ |max(1 + 2b4)

∫ d

0

(bv
top wall)

2dx

+ |b̄′ |max

{
2
a4

∫ 1

−1

∫ d

0

u2
ydxdy + 2a4(1 +

2
b4

)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}}

+
N

Rm

{
2a5|b̄′ |max(1 + 2b5)

∫ d

0

v2
walldx

+ |b̄′ |max

{
2
a5

∫ 1

−1

∫ d

0

(bu
y )2dxdy + 2a5(1 +

2
b5

)
∫ 1

−1

∫ d

0

v2
ydxdy

}}}
(D-33)

+k1

{
N

Rm

{
1
a6

|b̄|max

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bu
y )2

]
dxdy

+ 2a6|b̄|max

{
2(1 + 2b6)

∫ d

0

v2
walldxdy + 2(1 +

2
b6

)
∫ 1

−1

∫ d

0

v2
ydxdy

}}}
(D-34)

+k1

{
N

Rm

{
1
a7

Bo

∫ 1

−1

∫ d

0

[
(bv

x)2 + (bu
y )2

]
dxdy

+ 2a7Bo2
∫ 1

−1

∫ d

0

u2
ydxdy

}}
(D-35)

+k2

{
1
a8

|b̄|max

∫ 1

−1

∫ d

0

u2
xdxdy +

1
a9

|b̄|max

∫ 1

−1

∫ d

0

v2
xdxdy

+a8|b̄|max2
∫ 1

−1

∫ d

0

(bu
y )2dxdy

+ a9|b̄|max

{
2(1 + 2b9)

∫ d

0

(bv
top wall)

2dx + 2(1 +
2
b9

)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}}
(D-36)
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+k2

{
1

a10
Bo

∫ 1

−1

∫ d

0

u2
ydxdy +

1
a11

Bo

∫ 1

−1

∫ d

0

v2
ydxdy

+a10Bo2
∫ 1

−1

∫ d

0

(bu
y )2dxdy

+ a11Bo

{
2(1 + 2b11)

∫ d

0

(bv
top wall)

2dx + 2(1 +
2

b11
)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}}
(D-37)

+k1

{
N

Rm

{
2

a12

{
2(1 + 2b12)

∫ d

0

v2
walldxdy + 2(1 +

2
b12

)
∫ 1

−1

∫ d

0

v2
ydxdy

}

+a12c12

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

+
2a12

c12
2



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2





 (D-38)

+k1

{
N

Rm

{
2

a13

{
2(1 + 2b13)

∫ d

0

(bv
top wall)

2dx + 2(1 +
2

b13
)
∫ 1

−1

∫ d

0

(bv
y)2dxdy

}

+
2a13

c13
2



(∫ 1

−1

∫ d

0

u2
ydxdy

)2

+

(∫ 1

−1

∫ d

0

[
u2

x + u2
y

]
dxdy

)2



+ a13c13

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

}}
(D-39)

+k2

{
1

a14

∫ 1

−1

∫ d

0

u2
xdxdy

+2a14



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2



 (D-40)

+k2

{
1

a15

∫ 1

−1

∫ d

0

v2
xdxdy

+
2a15

c15



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2



+2a15c15



(

1 +
2

b15

)(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+ (1 + 2b15)

(∫ 1

−1

∫ d

0

(bv
top wall)

2dxdy

)2

+
(

2 + 2b15 +
2

b15

)(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2



 (D-41)

+k2

{
1

a16

∫ 1

−1

∫ d

0

v2
ydxdy

+2a16



(

1 +
2

b16

)(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+ (1 + 2b16)

(∫ 1

−1

∫ d

0

(bv
top wall)

2dxdy

)2

+
(

2 + 2b16 +
2

b16

)(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2



 (D-42)
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+k2

{
1

a17

∫ 1

−1

∫ d

0

u2
ydxdy

+
2a17

c17



(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2



+2a17c17



(

1 +
2

b17

)(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+ (1 + 2b17)

(∫ 1

−1

∫ d

0

(bv
top wall)

2dxdy

)2

+
(

2 + 2b17 +
2

b17

)(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2



 (D-43)

Defining

h1 =
(

k2

a8
|b̄|max +

k2

a14

)
(D-44)

h2 =
(

k1|Ū ′ |max
2
a1

+ k1
N

Rm
|b̄′ |max

2
a4

+ k1
N

Rm
2a7Bo2 +

k2

a10
Bo +

k2

a17

)
(D-45)

h3 =
(

k2
1
a9

|b̄|max +
k2

a15

)
(D-46)

h4 =
(

k1|Ū ′ |max2a1(1 +
2
b1

) + k2|b̄′ |max2a2(1 +
2
b2

) + k1
N

Rm
|b̄′ |max2a5(1 +

2
b5

)

+k1
N

Rm
2a6|b̄|max2(1 +

2
b6

) +
k2

a11
Bo + k1

N

Rm
2(1 +

2
b12

) +
k2

a16

)
(D-47)

h5 =
(

k1
N

Rm

1
a6

|b̄|max + k1
N

Rm

1
a7

Bo

)
(D-48)

h6 =
(

k2|b̄′ |max
2
a2

+ k2|Ū ′ |max
2
a3

+ k1
N

Rm
|b̄′ |max

2
a5

+ k1
N

Rm

1
a6

|b̄|max

+ k1
N

Rm

1
a7

Bo + k2a8|b̄|max2 + k2a10Bo2
)

(D-49)

h7 =
(

k2|Ū ′ |max2a3(1 +
2
b3

) + k1
N

Rm
|b̄′ |max2a4(1 +

2
b4

) + k2a9|b̄|max2(1 +
2
b9

)

+k2a11Bo2(1 +
2

b11
) + k1

N

Rm
2(1 +

2
b13

)
)

(D-50)

h8 = k1
N

Rm

2a13

c13
2 (D-51)

h9 =
(

k1
N

Rm

2a12

c12
2 + k22a14 + k2

2a15

c15
+ k2

2a17

c17

)
(D-52)

h10 =
(

k22a15c15

(
1 +

2
b15

)
+ k22a16

(
1 +

2
b16

)
+ k22a17c17

(
1 +

2
b17

))
(D-53)

h11 =
(

k22a15c15

(
2 + 2b15 +

2
b15

)
+ k22a16

(
2 + 2b16 +

2
b16

)

+k22a17c17

(
2 + 2b17 +

2
b17

))
(D-54)
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h12 =
(

k1
N

Rm

2a12

c12
2 + k22a14 + k2

2a15

c15
+ k2

2a17

c17

)
(D-55)

h13 = k1
N

Rm
a12c12 + k1

N

Rm
a13c13 (D-56)

h14 =
(

k12a1|Ū ′ |max(1 + 2b1) + k22a2|b̄′ |max(1 + 2b2) + k1
N

Rm
2a5|b̄′ |max(1 + 2b5)

+k1
N

Rm
2a6|b̄|max2(1 + 2b6) + k1

N

Rm

2
a12

2(1 + 2b12)
)

(D-57)

h15 =
(

k22a3|Ū ′ |max(1 + 2b3) + k1
N

Rm
2a4|b̄′ |max(1 + 2b4) + k2a9|b̄|max2(1 + 2b9)

+k2a11Bo2(1 + 2b11) + k1
N

Rm

2
a13

2(1 + 2b13)
)

(D-58)

h16 = (k22a15c15(1 + 2b15) + k22a16(1 + 2b16) + k22a17c17(1 + 2b17)) (D-59)

we write

|g(v,B)| ≤ h1

∫ 1

−1

∫ d

0

u2
xdxdy + h2

∫ 1

−1

∫ d

0

u2
ydxdy + h3

∫ 1

−1

∫ d

0

v2
xdxdy + h4

∫ 1

−1

∫ d

0

v2
ydxdy

+h5

∫ 1

−1

∫ d

0

(bv
x)2dxdy + h6

∫ 1

−1

∫ d

0

(bu
y )2dxdy + h7

∫ 1

−1

∫ d

0

(bv
y)2dxdy

+h8

(∫ 1

−1

∫ d

0

u2
ydxdy

)2

+ h8

(∫ 1

−1

∫ d

0

[
u2

x + u2
y

]
dxdy

)2

+ h9

(∫ 1

−1

∫ d

0

(bu
y )2dxdy

)2

+h10

(∫ 1

−1

∫ d

0

(bv
y)2dxdy

)2

+ h11

(∫ 1

−1

∫ d

0

[
(bv

x)2 + (bv
y)2

]
dxdy

)2

+h12

(∫ 1

−1

∫ d

0

[
(bu

x)2 + bu
y )2

]
dxdy

)2

+ h13

∫ 1

−1

∫ d

0

[
(bv

x)4 + (bu
y )4

]
dxdy

+h14

∫ d

0

v2
walldx + h15

∫ d

0

(bv
top wall)

2dx + h16

(∫ d

0

(bv
top wall)

2dx

)2

Defining g1 = max(h1, h2, h3, h4, h5, h6, h7), g2 = 6max(h8, h9, h10, h11, h12, h13), g3 = h14, g4 = h15, g5 = h16, we
can finally write

|g(v,B)| ≤ g1m(v,B) + g2m
2(v,B) + g3

∫ d

0

v2
walldx + g4

∫ d

0

(bv
top wall)

2dx + g5

(∫ d

0

(bv
top wall)

2dx

)2

.
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